首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
刘畅  周晟  王延辉  侯士敏 《中国物理 B》2017,26(11):113201-113201
A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The physical package realizes the microwave interrogation of a rubidium-atomic beam. The optical systems, equipped with two 780-nm distributed feedback laser diodes, yield light for pumping and detecting. The servo loops control the frequency of a local oscillator with respect to the microwave spectrum. With the experimental systems, the microwave spectrum, which has an amplitude of 4 n A and a line width of 700 Hz, is obtained. Preliminary tests show that the clock short-term frequency stability is 7 × 10~(-11) at 1 s, and 3 × 10~(-12) at 1000 s. These experimental results demonstrate the feasibility of the scheme for a manufactured clock.  相似文献   

2.
An atomic clock system based on coherent population trapping (CPT) resonance in 85Rb is reported, while most past works about the CPT clock are in ST Rb. A new modulation method (full-hyperfine-frequency-splitting modulation) is presented to reduce the effect of light shift to improve the frequency stability of the CPT clock in SSRb. The experimental results show that the short-term frequency stability of the CPT clock in SSRb is in the order of 10^-10/s and the long-term frequency stability can achieve 1.5 × 10^-11/80000s, which performs as well as 87 Rb in CPT resonance. This very good frequency stability performance associated with the low-cost and low-power properties of SSRb indicates that an atomic clock based on CPT in SSRb should be a promising candidate for making the chip scale atomic clock.  相似文献   

3.
An accurate frequency control method and atomic clock based on the coherent population beating(CPB) phenomenon is implemented.In this scheme,the frequency difference of an rf and an atomic transition frequency can be digitally obtained by measuring the CPB oscillation frequency.The frequency measurement resolution of several milli-hertz can be achieved by using a 10 MHz oven controlled crystal oscillator as the reference.The expression of the Allan deviation of the CPB clock is theoretically deduced and it is revealed that the Allan deviation is inversely proportional to the signal-to-noise ratio and proportional to the line-width of coherent population trapping spectrum.We also approve that the CPB atomic clock has a large toleration of the drift of the local oscillator.In our CPB experimental system,a frequency instability of 3.0×10~(-12) at 1000 s is observed.The important feature of high frequency measurement resolution of the CPB method may also be used in magnetometers,atomic spectroscopy,and other related research.  相似文献   

4.
We present an experimental scheme of a cold atom space clock with a movable cavity. By using a single microwave cavity, we find that the clock has a significant advantage, i.e. the longitudinal cavity phase shift is eliminated. A theoretical analysis has been carried out in terms of the relation between the atomic transition probability and the velocity of the moving cavity by taking into account the velocity distribution of cold atoms. The requirements for the microwave power and its stability for atomic π/2 excitation at different moving velocities of the cavity lead to the determination of the proper working parameters of the rubidium clock in frequency accuracy 10^-17. Finally, the mechanical stability for the scheme is analysed and the ways of solving the possible mechanical instability of the device are proposed.  相似文献   

5.
A scheme for a microwave atomic clock is proposed for Cs or Rb atoms trapped in a blue detuned optical lattice. The ac Stark shift of the clock transition due to a trapping laser is calculated. We analyze it at some specific laser wavelength. Compared with the case of the fountain clock, the cavity related shifts, the collision shift and the Doppler effect are eliminated or suppressed dramatically in an atomic lattice clock. By analyzing various sources of clock uncertainty, a microwave atomic lattice clock with a high accuracy and small volume is feasible.  相似文献   

6.
《中国物理 B》2021,30(7):74208-074208
We propose a physical model of estimating noise and asymmetry brought by high isolation Bi-directional erbiumdoped fiber amplifiers(Bi-EDFAs), no spontaneous lasing even with high gain, in longdistance fiber-optic time and frequency(T/F) synchronization system. It is found that the Rayleigh scattering noise can be suppressed due to the high isolation design, but the amplified spontaneous emission(ASE) noise generated by the high isolation Bi-EDFA and the bidirectional asymmetry of the transmission link caused by the high isolation Bi-EDFA will deteriorate the stability of the system.The calculated results show that under the influence of ASE noise, the frequency instability of a 1200 km system composed of 15 high isolation Bi-EDFAs is 1.773 × 10-13/1 s. And the instability caused by asymmetry is 2.6064 × 10-16/30000–35000 s if the total asymmetric length of the bidirectional link length is 30 m. The intensity noises originating from the laser and detector, the transfer delay fluctuations caused by the variation in ambient temperature and the jitter in laser output wavelength are also studied. The experiment composed of three high isolation Bi-EDFAs is done to confirm the theoretical analysis. In summary, the paper shows that the short-term instability of the T/F synchronization system composed of high isolation Bi-EDFAs is limited by the accumulation of ASE noise of amplifiers and the laser frequency drift, while the long-term instability is limited by the periodic variation in ambient temperature and the asymmetry of the amplifiers.The research results are useful for pointing out the direction to improve the stability of the fiber-optic T/F synchronization system.  相似文献   

7.
An experiment of a high performance small optically pumped caesium (Cs) beam frequency standard is reported. An extended cavity diode laser works as the probing laser, of which the frequency is stabilized by the Zeeman modulation method. The running parameters of the frequency standard are dynamically optimized via digital servo electronics. The experimental setup improves the frequency stability up to 1.8 × 10^-12 at T = 1 s and about 1.0 × 10^-13 at T= 10^5s (Allan deviation)  相似文献   

8.
The frequencies of two 698 nm external cavity diode lasers (ECDLs) are locked separately to two independently located ultrahigh finesse optical resonant cavities with the Pound Drever-Hall technique. The linewidth of each ECDL is measured to be -4.6 Hz by their beating and the fractional frequency stability below 5 × 10^-15 between 1 s to lOs averaging time. Another 698nm laser diode is injection locked to one of the cavity-stabilized ECDLs with a fixed frequency offset for power amplification while maintaining its linewidth and frequency characteristics. The frequency drift is H1 Hz/s measured by a femtosecond optical frequency comb based on erbium fiber. The output of the injection slave laser is delivered to the magneto-optical trap of a Sr optical clock through a iO- ta-long single mode polarization maintaining fiber with an active fiber noise cancelation technique to detect the clock transition of Sr atoms.  相似文献   

9.
A high-performance transportable fountain clock is attractive for use in laboratories with high-precision time-frequency measurement requirements. This Letter reports the improvement of the stability of a transportable rubidium-87 fountain clock because of an optimization of temperature characteristics. This clock integrates its physical packaging, optical benches, microwave frequency synthesizers, and electronic controls onto an easily movable wheeled plate. Two optical benches with a high-vibration resistance are realized in this work. No additional adjustment is required after moving them several times. The Allan deviation of the fountain clock frequency was measured by comparing it with that of the hydrogen maser. The fountain clock got a short-term stability of 2.3 × 10~(-13) at 1 s and long-term stability on the order of 10~(-16) at 100,000 s.  相似文献   

10.
The environmental perturbation on atoms is a key factor restricting the performance of atomic frequency standards, especially in the long-term scale. In this Letter, we perform a real-time noise distinguish(RTND) to an atomic clock to decrease the uncertainty of the atomic clock beyond the level that is attained by the current controlling method. In RTND, the related parameters of the clock are monitored in real time by using the calibrated sensors, and their effects on the clock frequency are calculated. By subtracting the effects from the error signal, the local oscillator is treated as equivalently locked to the unperturbed atomic levels. In order to perform quantitative tests, we engineer time-varying noise much larger than the intrinsic noise in our fountain atomic clock. By using RTND, the influences of the added noises are detected and subtracted precisely from the error signals before feeding back to the reference oscillator. The result shows that the statistical uncertainty of our fountain clock is improved by an order of magnitude to 2 × 10~(-15). Besides, the frequency offset introduced by the noise is also corrected, while the systematic uncertainty is unaffected.  相似文献   

11.
We report an efficient Q-switched laser action based on a semiconductor saturable absorber mirrors (SESAMs) as passively Q-switched laser starter and a Yb:LYSO alloyed crystal as gain material pumped directly by 974nm InGaAs laser diodes. The output pulse duration is measured to be about 7μs, while the average power and the repetition rate of the pulse chain are about 0.92 W and 6.2 kHz, respectively, under 12.5 W absorbed pumping power. The Q-switched mode-locked pulse train is also observed in this setup. The laser performance shows that Yb:LYSO is a promising laser gain medium for laser-diode pumped compact solid-state lasers.  相似文献   

12.
The Al~+ ion optical clock is a very promising optical frequency standard candidate due to its extremely small black-body radiation shift. It has been successfully demonstrated with the indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al~+ ion optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme,two Al~+ traps are utilized. The first trap is used to trap a large number of Al~+ ions to improve the stability of the clock laser,while the second trap is used to trap a single Al~+ ion to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach9.0×10~(-17)/τ~(1/2). For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed 234 nm two-photon cooling laser is utilized to further improve the accuracy of the clock laser. The total systematic uncertainty can be reduced to about 1×10~(-18). The proposed Al~+ ion optical clock has the potential to become the most accurate and stable optical clock.  相似文献   

13.
An optical flequency comb phase-locked on an iodine frequency stabilized diode laser at 634 nm is constructed to transfer the accuracy and stability from the optical domain to the radio frequency domain. An external-cavity diode laser is frequency-stabilized on the Doppler-free absorption signals of the hyperfine transition R(80)8-4 using the third-harmonic detection technique. The instability of the ultra-stable optical oscillator is determined to be 7 ×10^-12 by a cesium atomic clock via the optical frequency comb's mass frequencv dividing technique.  相似文献   

14.
We present a laser frequency locking system based on acousto-optic modulation transfer spectroscopy(AOMTS). Theoretical and experimental investigations are carried out to optimize the locking performance mainly from the view of the modulation frequency and index for the specific scheme of AOMTS. An FWHM linewidth of 63 kHz is achieved and the frequency stability in terms of Allan standard deviation reaches1.4 × 10~(-12) at 30 s. The frequency shifting capacity is validated throughout the acousto-optic modulator bandwidth while the laser is kept locked. This work offers a different but efficient choice for applications calling for both stabilized and tunable laser frequencies.  相似文献   

15.
颜森林 《中国物理》2007,16(11):3271-3278
A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical coupling-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5\,Gbit/s and a modulation frequency of 1\,GHz, chaos modulation with a rate of 0.2\,Gbit/s and a modulation frequency of 0.2\,GHz and chaos shifting key with a rate of 0.2\,Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.  相似文献   

16.
High speed fiber-based clock enhancement of NRZ data   总被引:3,自引:0,他引:3  
A scheme for all-fiber clock enhancement of non-return-to-zero (NRZ) data based on cross-phase modulation (XPM) effect in nonlinear fibers is proposed and demonstrated in simulation. The simulation results indicate that the clock-to-data ratio of NRZ signals at 64 Gb/s can be increased to 22.94 dB by using this scheme, and the pattern effect in clock enhanced signals is very weak. The ability of high speed operation up to 140 Gb/s of this scheme is also proved in our simulation.  相似文献   

17.
Waveguide invariant in shallow water is an attractive topic in recent three decades. The interference phenomena of direct wave of radiated noise of underwater target and reflection wave from sea surface and sea bottom can be considered as a typical case of shallow water waveguide.The interference striation pattern of direct wave and its reflection is the effective and comprehensive figure for better understanding the essence of shallow water waveguide invariant.The theoretical analysis of interference phenomena generated by direct wave of radiated noise of underwater target and its reflection wave from sea surface and sea bottom is presented in this paper.It is shown that the interference wave resulted by sea surface reflection will produce striation pattern centered at high frequency band.But the interference of nulling frequency resulted by sea bottom reflection may be at low frequency or high frequency, it strongly depends on the acoustic behavior of sea bottom.The relationship between main parameters of interference striation pattern and target,receiver,and environment is derived.It is shown that the interference striation have the shape of hyperbolic curve.The equation set of the hyperbolic curve and its asymptotic line is presented.The at sea experiment carried out in South China sea shows some interesting results.A part of data processing results are illustrated in this paper.The results expressed in this paper show that the interference striation pattern can be used,in some conditions,as a potential means for target recognition.  相似文献   

18.
We report the recent advance in our rubidium atomic fountain clock(AFC). The parameters of the Ramsey cavity are optimized by balancing the coupling from the two ports. The temperature control system of the Ramsey interaction region is renovated, and the resonant temperature of the Ramsey cavity is regulated to be slightly above the room temperature.The quality of magnetic environment in the Ramsey interaction region is also improved. A new digital-to-analog converter(DAC) circuit that controls the local oscillator is adopted to decrease the noise of the oven-controlled crystal oscillator output. As a result, the short-term fractional frequency stability of 2.7 × 10-13-1/2τand the long-term fractional frequency stability of 1.6 × 10-15 at the average time of 32800 s are achieved.  相似文献   

19.
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average outp  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号