首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   14篇
化学   1篇
晶体学   3篇
物理学   13篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2009年   3篇
  1983年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
By means of the particle-swarm optimization method and density functional theory calculations, the lowestenergy structure of SnAs is determined to be a bilayer stacking system and the atoms on top of each other are of the same types. Using the hybrid functional of Heyd–Scuseria–Ernzerhof, SnAs is calculated to be a semiconductor with an indirect band gap of 1.71 eV, which decreases to 1.42 eV with the increase of the bi-axial tensile stress up to 2%, corresponding to the ideal value of 1.40 eV for potential photovoltaic applications. Based on the deformation potential theory, the two-dimensional(2 D) SnAs has high electron motilities along x and y directions(1.63 × 10~3 cm~2 V~(-1)s~(-1)). Our calculated results suggest that SnAs can be viewed as a new type of 2 D materials for applications in optoelectronics and nanoelectronic devices.  相似文献   
2.
First principles calculations are preformed to systematically investigate the electronic structures, elastic and thermodynamic properties of the monoclinic and orthorhombic phases of Si C2N4 under pressure. The calculated structural parameters and elastic moduli are in good agreement with the available theoretical values at zero pressure. The elastic constants of the two phases under pressure are calculated by stress–strain method. It is found that both phases satisfy the mechanical stability criteria within 60 GPa. With the increase of pressure, the degree of the anisotropy decreases rapidly in the monoclinic phase, whereas it remains almost constant in the orthorhombic phase. Furthermore, using the hybrid density-functional theory, the monoclinic and orthorhombic phases are found to be wide band-gap semiconductors with band gaps of about 2.85 e V and 3.21 e V, respectively. The elastic moduli, ductile or brittle behaviors, compressional and shear wave velocities as well as Debye temperatures as a function of pressure in both phases are also investigated in detail.  相似文献   
3.
采用基于密度泛函理论的第一性原理方法,对新近发现的四方Mo2B在0~40 GPa压力范围内的物性进行了研究,研究内容包括弹性、各向异性、脆性延展性、硬度、理论强度、热容、热膨胀系数等基本物理性质.研究发现在0~40 GPa压力范围内,四方Mo2B晶体均满足力学稳定性条件,并且表现出较强的各向同性.同时发现该晶体具有较高的抗压缩能力,但抗剪切能力较差,抗压和抗剪切能力会随压力增加而增长.此外还发现四方Mo2B为韧性材料,且压力越大韧性越强.计算显示它的维氏硬度为14.3 GPa,限制其作为超硬材料的应用.通过应力-应变的计算发现其不同方向的理想拉伸及剪切强度都比较低.此外,还利用准谐德拜模型研究了四方Mo2B的热膨胀系数以及定容热容等热力学性质.  相似文献   
4.
采用第一性原理计算方法,通过改变Zn1-xBexO合金中Be的浓度及其掺杂位型,研究N在Zn1-xBexO合金中的形成能和受主离化能,分析了p型导电的可能性.结果表明:Be-N共掺杂时,N优先占据周围没有Be的O位置,每增加一个Be近邻掺杂原子,No的形成能增加约0.2 eV.当近邻Be原子数为2和3时,No的受主离化能比较低.Be浓度为11at;时,具有2个近邻Be原子的No的受主离化能降低至0.1 eV左右,可以认为是浅受主,Be-N共掺ZnO才可能呈p型导电.考虑No在室温条件下的受主离化率和No形成能的影响,估算出Be-N所提供的空穴载流子浓度不会高于1017 cm-3;如果计及n型背景载流子的补偿效应,Be-N共掺ZnO的p型导电率应该比较低.  相似文献   
5.
This paper reports that two identical external-cavity-diode-laser (ECDL) based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition R(80)8-4 of 127I2. The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique. The instability of the stabilized laser is measured to be 2.8×10-12 (after 1000 s) by counting the beat note between the two lasers. The absolute optical frequency of the transition is, for the first time, determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock. The uncertainty of the measurement is less than 4.9 kHz.  相似文献   
6.
Using the particle swarm optimization algorithm on structural search methods, we focus our crystal structures search on boron-rich alkali metal compounds of MB12(M = Be, Mg, Ca, Sr) with simulation cell sizes of 1–2 formula units(f.u.)at 0 GPa. The structure, electronic, and mechanical properties of MB12 are obtained from the density functional theory using the plane-wave pseudopotential method within the generalized gradient approximations. The formation enthalpies of MB12 regarding to solid metal M and solid alpha-boron suggested the predicted structures can be synthesized except for BeB12. The calculated band structures show MB12(M = Be, Mg, Ca, Sr) are all indirect semiconductors. All the calculated elastic constants of MB12 satisfy the the mechanical stable conditions. The mechanical parameters(i.e., bulk modulus,shear modulus, and Young’s modulus) are derived using the Voigt–Reuss–Hill method. The G/B ratios indicated that the MB12 should exhibit brittle behavior. In addition, the hardness, Debye temperature, universal anisotropic index, and the percentage of anisotropy in compression and shear are also discussed in detail. We hope our results can inspire further experimental study on these boron-rich alkali-metal compounds.  相似文献   
7.
By the particle-swarm optimization method, it is predicted that tetragonal P42mc, 141md, and orthorhombic Amm2 phases of vanadium nitride (VN) are energetically more stable than NaCl-type structure at 0 K. The enthalpies of the predicted three new VN phases, along with WC, NaC1, AsNi, CsCl type structures, are calculated each as a function of pressure. It is found that VN exhibits the WC-to-CsCl type phase transition at 256 GPa. For the considered seven crystal- lographic VN phases, the structures, elastic constants, bulk moduli, shear moduli, and Debye temperatures are investigated. Our calculated equilibrium structural parameters are in very good agreement with the available experimental results and the previous theoretical results for the NaC1 phase. The Debye temperatures of VN predicted three novel phases, which are all higher than those of the remaining structures. The elastic constants, thermodynamic properties, and elastic anisotropies of VN under pressure are obtained and the mechanical stabilities are analyzed in detail based on the mechanical stability criteria. Moreover, the effect of metallic bonding on the hardness of VN is also investigated, which shows that VNs in P42mc, 141md, and Amm2 phases are potential superhard phases. Further investigation on the experimental level is highly recommended to confirm our calculations presented in this paper.  相似文献   
8.
We construct an ultra-stable external-cavity diode laser via modulation transfer spectroscopy referencing on a hyperfine component of the ST Rb D2 lines at 780 nm. The Doppler-free dispersion-like modulation transfer signal is obtained with high signal-to-noise-ratio. The instability of the laser frequency is measured by beating with an optical frequency comb which is phase-locked to an ultra-stable oven controlled crystal oscillator. The Allan deviation is 3.9 × 10-13 at I s averaging time and 9.8 ×10-14 at 90s averaging time.  相似文献   
9.
An optical flequency comb phase-locked on an iodine frequency stabilized diode laser at 634 nm is constructed to transfer the accuracy and stability from the optical domain to the radio frequency domain. An external-cavity diode laser is frequency-stabilized on the Doppler-free absorption signals of the hyperfine transition R(80)8-4 using the third-harmonic detection technique. The instability of the ultra-stable optical oscillator is determined to be 7 ×10^-12 by a cesium atomic clock via the optical frequency comb's mass frequencv dividing technique.  相似文献   
10.
采用基于密度泛函理论的第一原理方法研究了层状MoS2在压力下的热动力学性质和相变机制.计算表明MoS2的2Hc结构在17.5GPa会相变到2 Ha结构,与此前理论结果20GPa基本一致.对比分析了两个结构在压力下的弹性常数、体模量、波速、德拜温度、线性体模量、热膨胀系数和定容热容等热动力学性质.研究表明MoS2的2 Hc和2 Ha结构在0~60GPa都满足力学稳定性条件,说明相变不是由于力学稳定性丧失导致,并且两个高压相在压力下呈现出较强的弹性各向异性,在0~50GPa内其a轴抗压缩均能力强于c轴.在相变机制上,Mulliken布居分析表明,随着压力增加,S原子向Mo原子转移电子以及Mo原子内s电子向d电子转移对MoS2从2 Hc结构相变到2 Ha结构起到重要作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号