首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Na[SmIII(edta)(H2O)3] · 5H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and {[SmIII(Hpdta)(H2O)] · 2H2O} n (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes were prepared with heat-refluxing and acidity-adjusting methods, respectively. And their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. The Na[SmIII(edta)(H2O)3] · 5H2O complex shapes a mononuclear structure, and crystallizes in the orthorhombic crystal system with space group Fdd2. The central SmIII ion is nine-coordinated by one hexadentate edta ligand and three water molecules. The crystal data are as follows: a = 19.139(10) ?, b = 35.00(2) ?, c = 11.928(10) ?, V = 7989(9) ?3, Z = 16, D c = 2.014 g/cm3, μ = 3.046 mm−1, F(000) = 4848, R = 0.0439, and wR = 0.0941 for 3434 observed reflections with I ≥ 2σ(I). The SmN2O7 part in [SmIII(edta)(H2O)3] complex anion forms a pseudo-monocapped square antiprismatic polyhedron. The {[SmIII(Hpdta)(H2O)] · 2H2O} n complex is prepared with protonated pdta ligand firstly, which forms one dimensional unlimited ladderlike eight-coordinated structure, and crystallizes in the monoclinic crystal system with space group P21/n. The central SmIII ion, in one construction unit, is coordinated by two nitrogen atoms from one hexadentate pdta ligand and six oxygens from the same pdta ligand, one water molecule and one carboxylic group of neighbour pdta ligand, respectively. The crystal data are as follows: a = 12.720(3) ?, b = 9.3800(19) ?, c = 14.420(3) ?, β = 96.11(3)°, V = 1710.7(6) ?3, Z = 2, D c = 1.971 g/cm3, μ = 3.492 mm−1, F(000) = 1004, R = 0.0225 and wR = 0.0607 for 3182 observed reflections with I ≥ 2σ(I). Otherwise, each part of SmN2O6 in {[SmIII(Hpdta)(H2O)] · 2H2O} complex segment adopts a pseudo-square antiprismatic polyhedron.  相似文献   

2.
In this work, the title complexes, NH4[ErIII(Cydta)(H2O)2] · 4.5H2O (I) (H4Cydta = trans-1,2-cyclo-hexanediamine-N,N,N′,N′-tetraacetic acid) and (NH4)2[Er2III(Pdta)2(H2O)2] · 2H2O (II) (H4Pdta= propylene-diamine-N,N,N′,N′-tetraacetic acid), were prepared, respectively, and their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. Complex I selects a mononu-clear structure with pseudosquare antiprismatic geometry crystallized in the triclinic crystal system with space group $ P\bar 1 $ P\bar 1 and the central Er3+ ion is eight-coordinated by the hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.568(3), b = 10.024(3), c = 14.377(4) ?, α = 88.404(4)°, β = 75.411(4)°, γ = 88.332(4)°, V = 1194.2(6) ?3, Z = 1, ρ c = 1.793 g/cm3, μ = 3.586 mm−1, F(000) = 648, R = 0.0257, and wR = 0.0667 for 4169 observed reflections with I ≥ 2σ(I). Complex II is eight-coordinated as well, which selects a binuclear structure with two pseudosquare antiprismatic geometry and crystallizes in the monoclinic crystal system with space group P21/n. The central Er3+ ion is coordinated by two nitrogens and four oxygens from one hexadentate Pdta ligand. Besides, two oxygens come from one carboxylic group of the neighboring Pdta ligand and one water molecule, respectively. The crystal data are as follows: a = 12.7576(8), b = 9.3151(6), c = 14.3278(9) ?, β = 96.1380(10)°, V = 1692.93(19) ?3, Z = 4, ρ c = 2.054 g/cm3, μ = 5.015 mm−1, F(000) = 1028, R= 0.0228, and wR = 0.0534 for 2984 observed reflections with I ≥ 2σ(I).  相似文献   

3.
The reaction of indium thiocyanate with bipyridine (4,4-Bipy) and urotropine (Ur) gave [H2(4,4′-Bipy)][In(H2O)2(NCS)4]2 (I) and [HUr]2[In(H2O)(NCS)5] · 2H2O (II), which were identified using elemental analysis, IR spectra, and thermogravimetric analysis. The thermal decomposition of compound I and II ends at 650 and 640°C, respectively, and gives In2O3. X-Ray diffraction analysis of compound I showed that complex anions in the crystal form chains through O-H…S hydrogen bonds. The anion chains form a close packing of columns with bipyridine cations located in the voids. Original Russian Text ? S.P. Petrosyants, A.B. Ilyukhin, V.A. Ketsko, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 6, pp. 951–955.  相似文献   

4.
The NH4[EuIII(Cydta)(H2O)2]·4.5H2O (I) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[Eu2III(pdta)2(H2O)2]·6H2O (II) (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes are prepared by heat-refluxing and acidity-adjusting methods respectively, and their composition and structures are determined by elemental analyses and single crystal X-ray diffraction techniques. The complex I has a mononuclear structure, crystallizes in the triclinic crystal system with the P[`1]P\bar 1 space group; the central EuIII ion is eight-coordinated by a hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.653(4) ?, b = 10.041(4) ?, c = 14.405(6) ?, α = 88.469(6)°, β = 74.892(6)°, γ = 88.256(7)°, V = 1207.5(9) ?3, Z = 1, D c = 1.731 g/cm3, μ = 2.669 mm−1, F(000) = 638, R = 0.0257, and wR = 0.0667 for 3807 observed reflections with I ≥ 2σ(I). The EuN2O6 part in the [EuIII(Cydta)(H2O)2] complex anion forms a pseudo-square antiprismatic polyhedron. The complex II is eight-coordinate as well; it is a binuclear structure that crystallizes in the monoclinic crystal system with the C 2/c space group; half of the central EuIII ion is coordinated by two nitrogen atoms from one hexadentate pdta ligand and six oxygen atoms from the same pdta ligand, one water molecule and carboxylic group from the neighboring pdta ligand respectively. The crystal data are as follows: a = 19.866(3) ?, b = 9.1017(12) ?, c = 21.010(3) ?, β = 104.972(2)°, V = 3670.1(9) ?3, Z = 8, D c = 2.046 g/cm3, μ = 3.710 mm−1, F(000) = 2240, R = 0.0213 and wR = 0.0460 for 4183 observed reflections with I ≥ 2σ(I). Otherwise, the two EuN2O6 parts in the [Eu2III(pdta)2(H2O)2]2− complex anion form a pseudo-square antiprismatic polyhedron.  相似文献   

5.
Syntheses and structure determination of the YIII complexes with ethylenediaminetetraacetic acid (H4edta) and trans-1,2-cyclohexanediaminetetraacetic acid (H4cydta) are reported. The crystal and molecular structures of the complexes, as well as their molecular formulas and compositions, were determined by single-crystal X-ray structure analyses, NMR, IR, thermogravimetric measurements, and elementary analyses. The crystal of the Na[YIII(edta)(H2O)3]·5H2O complex belongs to the orthorhombic crystal system and space group Fdd2. The crystal data are as follows: a = 19.355(5) Å, b = 35.431(11) Å, c = 12.122(3) Å, V = 8313(4) Å3, Z = 16, M = 544.23, Dc = 1.739 g·cm−3, μ = 2.908 mm−1 and F(000) = 4480. The final R and Rw are 0.0483 and 0.1172 for 3284 (I > 2σ(I)) unique reflections, R and Rw are 0.0678 and 0.1440 for all 8499 reflections, respectively. The YIIIN2O7 part in the [YIII(edta)(H2O)3] complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure, in which the six coordinated atoms (two N and four O) from the edta ligand and three water molecules are coordinated to the central YIII ion directly. The crystal of the Na[YIII(cydta)(H2O)2]·5H2O complex belongs to the triclinic crystal system and space group. The crystal data are as follows: a = 8.405(2) Å, b = 9.970(2) Å, c = 14.763(4) Å, α = 88.538(4)°, β = 76.193(4)°, γ = 88.100(4)°, V = 1200.6(5) Å 3, Z = 2, M = 580.31, Dc = 1.605 g·cm−3, μ = 2.519 mm−1 and F(000) = 600. The final R and Rw are 0.0381 and 0.0911 for 4198 (I > 2σ(I)) unique reflections, R and Rw are 0.0530 and 0.1041 for all 6186 reflections, respectively. The YIIIN2O6 part in the [YIII(cydta)(H2O)2] complex anion has a pseudo square antiprismatic eight-coordinate structure in which the six coordinated atoms (two N and four O) from the cydta ligand and two water molecules are coordinated to the central YIII ion directly. Original Russian Text Copyright ? 2005 by J. Wang, Y. Wang, Zh. H. Zhang, X. D. Zhang, J. Tong, X. Zh. Liu, X. Y. Liu, Y. Zhang, and Zh. J. Pan __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 928–938, September–October, 2005.  相似文献   

6.
The title compounds, (NH4)2[MnII(edta)(H2O)]·3H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)2[MnII(cydta)(H2O)]·4H2O (H4cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[MnII(Hdtpa)]·3.5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), were prepared; their compositions and structures were determined by elemental analysis and single-crystal X-ray diffraction technique. In these three complexes, the Mn2+ ions are all seven-coordinated and have a pseudomonocapped trigonal prismatic configuration. All the three complexes crystallize in triclinic system in P-1 space group. Crystal data: (NH4)2[MnII(edta)(H2O)]·3H2O complex, a = 8.774(3) ?, b = 9.007(3) ?, c = 13.483(4) ?, α = 80.095(4)°, β = 80.708(4)°, γ = 68.770(4)°, V = 972.6(5) ?3, Z = 2, D c = 1.541 g/cm3, μ = 0.745 mm−1, R = 0.033 and wR = 0.099 for 3406 observed reflections with I ≥ 2σ(I); (NH4)2[MnII(cydta)(H2O)]·4H2O complex, a = 8.9720(18) ?, b = 9.4380(19) ?, c = 14.931(3) ?, α = 76.99(3)°, β = 83.27(3)°, γ = 75.62(3)°, V = 1190.8(4)?3, Z = 2, D c = 1.426 g/cm3, μ = 0.625 mm−1, R = 0.061 and wR = 0.197 for 3240 observed reflections with I ≥ 2σ(I); K2[MnII(Hdtpa)]·3.5H2O complex, a = 8.672(3) ?, b = 9.059(3) ?, c = 15.074(6) ?, α = 95.813(6)°, β = 96.665(6)°, γ = 99.212(6)°, V = 1152.4(7) ?3, Z = 2, D c = 1.687 g/cm3, μ = 1.006 mm−1, R = 0.037 and wR = 0.090 for 4654 observed reflections with I ≥ 2σ(I). Original Russian Text Copyright ? 2008 by X. F. Wang, J. Gao, J. Wang, Zh. H. Zhang, Y. F. Wang, L. J. Chen, W. Sun, and X. D. Zhang The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 753–759, July–August, 2008.  相似文献   

7.
The title complexes, K[Dy(Edta)(H2O)3] · 3.5 H2O (I) (H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)3[Dy(Ttha)] · 5H2O (II) (H6Ttha = triethylenetetramine-N, N,N′,N″,N‴,N‴-hexaacetic acid), and NH4[Dy(Cydta)(H2O)2] · 4.5H2O (III) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid), were prepared, and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques, respectively. In complex I, the Dy3+ ion is nine-coordinated by an Edta ligand and three water molecules, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the orthorhombic crystal system with space group Fdd2. The crystal data are as follows: a = 19.751(7), b = 35.573(12), c = 12.227(4) ?, V = 8591(5) ?3, Z = 16, space group Fdd2 ρc = 1.877 g/cm3, μ = 3.742 mm−1, F(000) = 4800, R = 0.0259, and wR = 0.0616 for 3218 observed reflections with I ≥ 2σ(I). For complex II, the Dy3+ ion is nine-coordinated by a Ttha ligand, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the monoclinic crystal system with space group P21/c. In addition, there is a free non-coordinate carboxyl group (-CH2COO) in the [Dy(Ttha)]3− complex anion. The crystal data are as follows: a = 10.353(3), b = 12.746(4), c = 23.141(7) ?, β = 91.005(5)°, V = 3053.2(15) ?3, Z = 4, space group P21/c ρc = 1.730 g/cm3, μ = 2.532 mm−1, F(000) = 1620, R = 0.0332 and wR = 0.0924 for 5390 observed reflections with I ≥ 2σ(I). For complex III, the Dy3+ ion is eight-coordinated by a ligand Cydta and two water molecules, yielding a distorted square antiprismatic conformation, and the complex crystallizes in the triclinic system with space group P . The crystal data are as follows: a = 8.604(3), b = 10.012(4), c = 14.369(6) ?, α = 88.330(6)°, β = 75.363(6)°, γ = 88.285(6)°, space group P V = 1196.9(8) ?3, Z = 2, ρc = 1.776 g/cm3, μ = 3.194 mm−1, F(000) = 644, R = 0.0445 and wR = 0.1041 for 3931 observed reflections with I ≥ 2σ(I). The article is published in the original.  相似文献   

8.
为了研究配体修饰对自旋交叉现象的影响,我们合成了两个Fe(Ⅱ)自旋交叉的配合物[Fe(dpq)(py)2(NCS)2]·H2O·py和[Fe(dpq)(py)2(NCSe)2]·1.5H2O,(dpq=二吡嗪[2,3-f:2′3′-h]喹喔啉,py=吡啶)。通过对这两个配合物磁性质和穆斯堡尔谱的研究,发现和用邻啡咯啉配体合成的配合物比较,配体的修饰对自旋交叉性质以及其临界温度  相似文献   

9.
The title compound [Mn(phendione)(PDC)(H2O)2]·2H2O (H2PDC=pyridine-2,6-dicarboxylic acid) has been prepared in aqueous solution and characterized by single X-ray diffraction structure determination, elemental analysis, IR spectroscopy, and thermal analyses. The compound crystallizes in Monoclinic system, space group C2/ca=1.017 51(11) nm, b=1.483 25(11) nm, c=1.461 21(13) nm, β=109.86(10)°, V=2.074 1(3) nm3Z=4, F(000)=1 028, μ=0.701 mm-1Dc=1.609 g·cm-3R1=0.028 9, wR2=0.078 8 [I>2σ(I)]. Crystal structure reveals that complex consists of one-dimensional chain framework bridged by hydrogen bonds that formed by uncoordinated water and oxygen atom of carboxyl group in PDC2-. Furthermore, the complexes form a three-dimensional super-molecular structure through hydrogen bonds. CCDC: 648570.  相似文献   

10.
The Na6[Gd2III(Ttha)2] · 8H2O (I) (H6Ttha = triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (H2En)3[GdIII(Ttha)]2 · 11H2O (II) (En = ethylenediamine) complexes were prepared with heat-refluxing and acidity-adjusting methods, respectively. Their composition and structures were determined by elemental analysis and single-crystal X-ray diffraction techniques. Complex I shapes a binuclear and nine-coordinated structure and crystallizes in the orthorhombic crystal system with space group Pccn. The central Gd3+ ion is coordinated with one Ttha ligand by three N atoms and four O atoms and with one adjacent Ttha ligand by two O atoms. The crystal data are as follows: a = 26.036(13) ?, b = 21.007(10) ?, c = 22.694(12) ?, V = 12412(11) ?3, Z = 8, c = 1.699 g/cm3, μ = 2.254 mm−1, F(000) = 6368, R = 0.0602, and wR = 0.1146 for 3434 observed reflections with I ≥ 2σ(I). The GdN3O6 part in the [Gd2III(Ttha)2]6− complex anion forms a pseudo-tricapped trigonal prismatic geometry. Complex II is also nine-coordinate, but mononuclear and crystallizes in the monoclinic crystal system with space group P21/n. While the central Gd3+ ion is coordinated by four nitrogen atoms and five oxygen atoms from the same Ttha ligand. The crystal data are as follows: a = 17.7726(17) ?, b = 19.2942(17) ?, c = 20.6045(19) ?, β = 111.4600(10)°, V = 6575.6(10) ?3, Z = 8, c = 1.693 g/cm3, μ = 2.102 mm−1, F(000) = 3428, R = 0.0333 and wR = 0.0827 for 14792 observed reflections with I ≥ 2σ(I). Otherwise, the GdN4O5 part in each [GdIII(Ttha)]3− complex anion adopts a pseudo-monocapped square antiprismatic polyhedron.  相似文献   

11.
The (NH4)3[YbIII(ttha)]·5H2O (I) (H6ttha = triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (NH4)[YbIII(pdta)(H2O)2]·5H2O (II) (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes are synthesized by heat-refluxing and acidity-adjusting methods, and their structures are determined by single crystal X-ray diffraction techniques. These two complexes are all mononuclear structures. The complex I crystallizes in ttha monoclinic crystal system with the P21/c space group. The central YbIII ion is nine-coordinated only by one the ligand, and one non-coordinate carboxyl group is left. The crystal data are as follows: a = 10.321(4) ?, b = 12.744(5) ?, c = 23.203(9) ?, β = 91.082(6)°, V = 3051(2) ?3, Z = 4, D c = 1.754 g/cm3, μ = 3.150 mm−1, F(000) = 1636, R = 0.0357, and wR = 0.0672 for 6203 observed reflections with I ≥ 2σ(I). The YbN4O5 part in the [YbIII(ttha)]3− complex anion forms a pseudo-monocapped square antiprismatic polyhedron. The complex II is coordinated with one pdta ligand and two water molecules, which form an eight-coordinate structure, and crystallizes in the triclinic crystal system with the P[`1]P\bar 1 space group. The YbN2O6 part in the [YbIII(pdta)(H2O)2] complex anion makes a pseudo-square antiprismatic polyhedron. The crystal data are as follows: a = 9.8923(9)?, b = 10.9627(10) ?, c = 12.2618(11) ?, α = 67.284(5)°, β = 70.956(6)°, γ = 68.741(5)°, V = 1115.97(18) ?3, Z = 2, D c = 1.843 g/cm3, μ = 4.264 mm−1, F(000) = 618, R = 0.0177, and wR = 0.0409 for 4036 observed reflections with I ≥ 2σ(I).  相似文献   

12.
The vanadium(V) complexes K[VO2(SeO4)(H2O)] and K[VO2(SeO4)(H2O)2] · H2O were synthesized using original procedures; their physicochemical properties were studied, and the crystal structure was determined on the basis of X-ray diffraction and neutron diffraction data. The structure of K[VO2(SeO4)(H2O)2] · H2O is composed of VO6 octahedra connected to form infinite chains by bridging SeO4 tetrahedra. Each VO6 tetrahedron has short terminal V-O bonds forming the bent dioxovanadium group VO2+ The unit cell parameters of K[VO2(SeO4)(H2O)2] · H2O are a = 6.4045(1) ?, b = 9.9721(2) ?, c = 6.6104(1) ?, β = 107.183(1)°, V = 403.34 ?3, Z = 2, monoclinic system, space group P21. The complex K[VO2(SeO4)(H2O)] forms a two-dimensional layered structure composed of highly distorted VO6 octahedra having two short terminal V-O bonds and SeO4 groups coordinated simultaneously by three vanadium atoms. This compound crystallizes in the monoclinic system (space group P21/c): a = 7.3783(1) ?, b = 10.5550(2) ?, c = 10.3460(2) ?, β = 131.625(1)°, V = 602.894(5) ?3, Z= 4. The vibrational spectra of the studied compounds are fully consistent with their structural features.  相似文献   

13.
A DTA study of thermal decomposition of (NH4)2[Ru(NO)Cl5] in helium atmosphere has been carried out, a synthetic procedure for preparation of the trans-diammine complex mer-[Ru(NO)(NH3)2Cl3] (I) with yield ∼70% has been developed. On re-crystallization of I from aqueous solution a trans-aquanitroso complex [Ru(NO)(NH3)2Cl2(H2O)]Cl·H2O (II) has been isolated. The structures of the compounds have been determined by single crystal X-ray diffraction: space group Pbcn, a = 6.607(1) ? b = 11.255(2) ? c = 9.878(2) ? (I) and space group Ima2, a = 8.3032(3) ?, b = 8.0890(2) ?, c = 15.9192(5) ? II). Original Russian Text Copyright ? 2008 by M. A. Il’in, V. A. Emel’yanov, and I. A. Baidina __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 6, pp. 1128–1136, November–December, 2008.  相似文献   

14.
Two novel organic amine templated lanthanide sulfates, layer (H3DETA)[Nd(H2O)(SO4)3] (I) and chain-like (H3DETA)[Ho(H2O)2(SO4)3] (II), are hydrothermally synthesized by using diethylenetriamine (DETA) as template, and are structurally characterized by ICP, elemental analysis, X-ray single-crystal diffraction, X-ray powder diffraction, IR, and TG. Compound I is monoclinic with space group P21 and data of unit cell: a = 6.6518(13), b = 10.373(2), c = 11.091(2) ?, β = 93.61(3)°, V = 763.7(3) ?3, ρ c = 2.421 g/cm3, μ(MoK α) = 3.885 mm−1, Z = 2, R 1 = 0.0194 for 3312 reflections with F o > 2σ(F o). The Nd ions are nine-coordinated by one oxygen atom of coordinated water and eight oxygen atoms of sulfates. Compound I displays the layer structure constructed by linking Nd ions with three-linkage SO4 tetrahedra as the bridge (affording one coordinated vertex and coordinated edge). Compound II crystallizes in the monoclinic space group P21/c with unit cell data: a = 6.594(13) ?, b = 14.783(3) ?, c = 16.599(3) ?, β = 93.47(3)°, V = 1614.2(6) ?3, ρ c = 2.454 g/cm3, μ(MoK α) = 5.37 mm−1, Z = 4, R 1 = 0.0259 for 1815 reflections with F o > 2σ(F o). The Ho ions are eight-coordinated by two oxygen atoms of coordinated water and six oxygen atoms of sulfates. The straight chain-like structure of II is attained by alternatively arranging HoO8 polyhedra and two-linkage SO4 tetrahedra (affording two coordinated vertices). The TG results indicate that the two compounds experience three weight losses and lead to distinct residues: Nd2O3 for I and HoO(SO4)0.5 for II.  相似文献   

15.
[Ni(dien)2]3[W4S4(CN)12]·20H2O and [Cu(dien)(Hdien)]2[W4S4(CN)12]·8H2O were obtained by evaporating water-ammonia solutions containing K6[W4S4(CN)12]·2H2O·2CH3OH, diethylene triamine, and NiCl2·6H2O or CuCl2·6H2O. The crystals of the complex compounds were obtained within 3 days. The complex compounds were characterized by IR spectroscopy and by XRD and elemental analysis. XRD data for the complex [Ni(dien)2]3[W4S4(CN)12]·20H2O are: triclinic system, , a = 14.671(2) Å, b = 16.448(3) Å, c = 19.814(3) Å, α = 67.841(3)°, β = 68.996(3)°, γ = 67.527(3)°, V = 3961.6(11) Å3, Z = 2; for the complex [Cu(dien)(Hdien)]2[W4S4(CN)12]·8H2O: monoclinic system, C2/c, a = 37.4290(1) Å, b = 17.7370(1) Å, c = 25.7370(2) Å, β = 105.3840(2)°, V = 16474.02(16) Å3, Z = 12. Original Russian Text Copyright ? 2005 by I. V. Kalinina, D. G. Samsonenko, Z. A. Starikova, A. A. Korlyukov, J. Lipkowski, V. P. Fedin, and M. Yu. Antipin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 1, pp. 139–148, January–February, 2005.  相似文献   

16.
Two metal-organic coordination polymers [Cu(bpy)2(H2O)2](NO3)2·4.5C2H5OH (1) and [Cu2(bpy)(H2O)(L-pha) 2](NO3)2·H2O (2) (L-Hpha = L-phenylalanine, bpy = 4,4′-bipyridyl) are prepared by slow evaporation of an aqueous alcoholic solution of copper nitrate, L-phenylalanine, and 4,4′-bipyridyl. The structure and composition of the obtained compounds are determined by single crystal XRD. The framework of compound 1 is positively charged and forms two types of intersecting channels. Compound 2 is a homochiral metal-organic coordination polymer whose structure contains L-phenylalanine anions.  相似文献   

17.
The crystal of [Ni(dien)2]2[Mn(NCS)6]·H2O was synthesized and the structure of its single crystal was determined by X-ray diffraction. The crystal is monoclinic system, space group P21/c with a=16.544(3),b=15.137(2), c=17.334(3)?, β=99.90(1)°, V=4276.3(12)?3, Z=4, Dc=1.479g·cm-3, Mr=951.55, F(000)=1998, μ=1.489mm-1, R=0.0399, Rw=0.0958. IR was also determined.  相似文献   

18.
Two novel ethylenediaminium salt of europium complexes with aminopolycarboxylic acid ligands, (EnH2)3[EuIII(Ttha)]2 · 11H2O (I) (En is ethylenediamine, H6Ttha is triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (EnH2)[EuIII(Egta)(H2O)]2 · 6H2O (II) (H4Egta is ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) complexes were synthesized, and their crystal structures were determined by single-crystal X-ray diffraction techniques. Both of the two complexes adopt nine-coordinate structures with the pseudo-monocapped square antiprism and crystallize in the monoclinic crystal system with the P21/n space group. The crystal data for complex I are as follows: a = 17.8262(8), b = 19.3137(5), c = 20.6233(8) ?, β = 111.301(2)°, V = 6615.3(4) ?3, Z = 8, ρ c = 1.677 mg/m3, μ = 1.981 mm−1, F(000) = 3432, R = 0.0308, and wR = 0.0737 for 43622 observed reflections with I ≥ 2σ(I). The crystal data for complex II are as follows: a = 12.952(3), b = 12.618(2), c = 14.809(3) ?, β = 105.695(2)°, V = 2330.0(8) ?3, Z = 4, ρ c = 1.800 mg/m3, μ = 2.765 mm−1, F(000) = 1276, R = 0.0297, and wR = 0.0638 for 18416 observed reflections with I ≥ 2σ(I). One remarkable feature of the two complexes is that the protonated [EnH22+] cations conjugating to [EuIII(Ttha)]26− and [EuIII(Egta)(H2O)]22− complex anions are reviewed, respectively, which open the path for the EuIII complexes conjugating with other various biomolecules.  相似文献   

19.
The structures of the crystals of Ba4[trans(N)-Co(Ida)2]3[cis-(N)-Co(Ida)2]2(ClO4)3 · 19.46H2O · 2CH3OH (I) and Ba[trans-(N)-Co(Ida)2]2 · 7H2O (II) (H2Ida is iminodiacetic acid) were determin by X-ray diffraction. The crystals of I containing two geometric isomers of the complex anions [Co(Ida)2] were obtained by a slow cooling of a hot solution, which contained initially only the cis-isomer. One Ba atom in I interacts with the trans-complex and with two cis-complexes to give a three-dimensional framework in crystal I. The positive charge of the last framework is compensated by one more trans-complex and by the perchlorate ions, one of which acts as a bidentate ligand with respect to the Ba atom. The crystals of II are built of the chains with the alternating Ba atoms and the trans-(N)-[Co(Ida)2] anions. The other anions of the same structure are each “suspended” to the Ba atoms of the chain. Original Russian Text ? M. Zabel, A.I. Poznyak, V.I. Pawlowskii, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 11, pp. 831–836.  相似文献   

20.
利用温度跃升傅立叶变换红外原位分析技术在0.1MPa氩气的条件下,对斯蒂酚酸碳酰肼铅和斯蒂酚酸碳酰肼镉的快速热分解过程进行了研究。研究结果表明,斯蒂酚酸碳酰肼铅的主要热分解气体为NH3, H2O和 HONO,而斯蒂酚酸碳酰肼镉的主要热分解气体为CO 和 NO,因此斯蒂酚酸碳酰肼镉不满足作为环境友好起爆药的使用要求。这两种化合物在快速热分解过程中均产生金属异氰酸盐、金属碳酸盐和金属氧化物。利用Real程序计算其燃烧温度可得斯蒂酚酸碳酰肼铅的燃烧温度要高于斯蒂酚酸碳酰肼镉,对其燃烧产物进行计算,发现HNCO不在燃烧产物之列,NO的含量也比实验得出的浓度要小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号