

[Ni(dien)₂]₂[Mn(NCS)₆]・H₂O的合成、晶体结构

沈 良*、1 徐 迅**.3 徐端钧² 徐元植²
(¹杭州师范学院化学系、杭州 310012)
(²浙江大学化学系,杭州 310027)
(³京都大学大学院理学研究科,京都 606-8502、日本)

关键词: 硫氰酸根 二乙烯三胺 多核配合物 晶体结构 分类号: 0614 0612

硫氰酸根的结构为 N = C-S⁻,其两端的 N 原子 和 S 原子分别有一对和三对孤对电子,因此,硫氰酸 根可采用多种不同的配位模式与金属离子发生配 位。硫氰酸根可作为单齿配体与一个金属离子定 位,形成 M-SCN 或 M-NCS 的单核配合物,也可以作 为桥联配体同时与两个、三个甚至四个金属离子配 位形成多核配合物¹¹⁻³¹;另一方面,硫氰酸根是一个 具有一定共轭性的偶极子,可传递磁相作用。因此, 选择硫氰酸根作为桥联配体,将多个顺磁金属离子 桥联形成一维、二维或三维结构的多核金属配合物 分子,并研究它们的磁性已成为分子磁学的一个研 究领域^{14~01}。本文仅报道标题配合物的合成与晶体 结构。

1 实验部分

1.1 仪器与试剂

元素分析用 Carlo-Erba 1160 型元素分析仪; Ni、 Mn 原子的存在经由 31W-IIA 型光栅摄谱仪定性证 实; 红外光谱用 Nicolet 205 型红外光谱仪(KBr 压 片); Siemens P4 四圆衍射仪。所用试均为分析纯。 1.2 合 成

称取 0.37g(1mmol)的 Ni(NO₃)₂・6H₂O,溶于 15mL 水中,在此水溶液中滴加 0.10g(1mmol) 二乙 烯三胺(dien),得一蓝色溶液 A;称取 0.67g(1mmol) 的 K₄Mn(SCN)。・6H₂O 溶解在 15mL 水中;将此无 色溶液滴加至上述蓝色 A 溶液中、50℃下搅拌反应 半小时, 新有少量棕黄色沉淀生成,过滤,将滤液置 于保温瓶中缓慢冷却, 三天后长出外形规则的蓝色 单晶体。元素分析 C₂₂H₅₄N₁₈OS₆MnNi₂,实验值(%): C 27.91, H 5.89, N 26.34; 理论值(%): C 27.76, H 5.68, N 26.50。

1.3 晶体结构测定

将大小为 0.62 × 0.56 × 0.30mm 的深蓝色单晶 粘接在玻璃毛细柱上,初步测定和数据的收集采用 石墨单色化 Mo Ka 射线 ($\lambda = 0.71073$ Å), 晶胞参数 和方位矩阵于 Siemens P4 四圆衍射仪上收集 25 个 衍射点测得。衍射数据采用 ω-20 扫描方式, 在 1.80° < θ < 25.0°的范围内, 共收集 8402 个衍射 点,其中独立衍射点为 7527 个,5463 个可观测衍射 点 $[F_0 > 4\sigma(F_0)]$ 经过经验吸收校正。晶体结构由 直接法解出,对非氢原子坐标和各项异性温度因子 进行全矩阵最小二乘法精修, 在差值 FOURIER 图上找到氢原子,最终偏差因子 R=0.0399、R.= 0. 0958; $w = 1 / [\sigma^2 (F_0^2) + (0.0586 P)^2], P = (F_0^2)$ $+2F_{c}^{2}$ /3, S = 0.978, $\Delta \rho_{max} = 0.756e \cdot \text{\AA}^{-3}$, $\Delta \rho_{max} =$ $-0.669e \cdot Å^{-1}$, $T_{max} = 0.6800$, $T_{max} = 0.4272_{o}$ 原子 的散射因子均来源于"X-ray 国际晶体学表"[7],所有 的计算采用 SHELXTL 5.0^[8]程序包完成。

收稿日期:2001-07-02。收修改稿日期:2001-09-03。

国家自然科学基金资助项目(No. 29973036)。

^{*}通讯联系人。E-mail: shenchem@ sina. com

^{**}现在地址:熊本大学大学院自然科学研究科。

第一作者:沈 良,男,37岁,副教授,博士;研究方问:配位化学。

· 310 ·

2 结果与讨论

2.1 晶体结构描述

配合物 [Ni(dien)₂]₂[Mn(NCS)₆] · H₂O 的非氢 原子坐标及主要键长和键角数据分别列于表 1 和表 2。离子对镍锰配合物的分子结构见图 1、品胞堆积 图见图 2。晶体结构分析结果表明,该配合物为离子 型、其晶体结构中含阳离子 [Ni(dien)₂]²⁺, 阴离子 Mn(SCN)₆⁴⁻和结晶水分子。

在[Ni(dien)₂]²⁺离子中,中心原子 Ni(II)由二个 二乙烯三胺分子的 6 个 N 原子构成畸变的八面体 配位构型,其中 N(1),N(4)和 N(7),N(10)分别位于 Ni(1)和 Ni(2)八面体的轴向位置上,其余 N 原子则 位于赤道平面, Ni-N 距离在 2.058~2.178Å 范围 内。

在 Mn(SCN) * 离子中,中心原子 Mn(II)与来自 硫氰酸根的 6 个 N 原子配位,形成略有畸变的八面 体构型。考察 Mn(1)八面体的键长,键角可以看出, C(19)-N(15)-Mn(1) 键角为 177.8(4)。,明显大于

C(18)-N(13)-Mn(1)键角(164.5°),但 Mn(1)-N(15) 键长(2.221Å)反而略大于 Mn(1)-N(15)键长 (2.197Å),这似乎表明 Mn 原子与 N 原子问除了 Mn 原子 d 轨道与 N 原子 sp 轨道重叠产生共价键以 外,还存在部分电价键的性质。

SCN⁻中 C-N 平均键长为1.138Å, C-S 平均距离 为1.622Å, S-C-N 键角在175.7°~178.2°范围内.基 本为一条直线。以上 SCN⁻的结构化学参数与通常 文献报道的相一致、其电子结构应为 S-C≅N⁻¹⁹。

此外. 晶胞中水分子与配体二乙烯三胺和硫氰 酸根上的 N 原子形成以下三种弱的氢键作用: N(6) -O(1w)(3.100Å)、O(1w)-N(16)(3.218Å)和 O(1w) -N(18)(3.319Å)、这些氢键的存在增加了水分子的 稳定性。

2.2 红外光谱分析

配合物红外图谱在 2060cm⁻¹ 处有一强度较大 的吸收峰,在 785cm⁻¹ 有一强度较弱的吸收峰,前者 可指认为 CN 伸缩振动峰,后者可指认为 CS 伸缩振 动峰。根据经验判断规则¹⁰¹,配合物中存在 N- 配位

atom	X	ł	Z	U(eq)	ulom,	Х	Y	Z	Uleq1
$N_1(1)$	3619(1)	1722(1)	1320(11	37(1)	Ni(2)	1103(1)	6862(1)	1958(1)	32(1)
Mn(])	Û	0	0	48(1)	$M_{\rm H}(2)$	5000	0	5000	55(1)
S(1)	1333(1)	- 165(1)	2758(1)	72(1)	S(2)	- 437(11	- 2822(1)	-1139(1)	107(1)
S(3)	-2474(1)	-443(1)	1244(1)	74(1)	S(4)	2026(1)	- 465(1)	4819(1)	74(l)
S(5)	5132(1)	2805(1)	3768(1)	105(1)	Š(6)	6102(1)	- [4[]}	2605(1)	79(1)
N(1)	4588(2)	903(2)	1221(2)	44(1)	N(2)	458212>	269212)	1526(2)	52(1)
N(31	2942(2)	518(2)	102112)	57(1)	N(4)	2654(2)	2558(2)	141412)	57(11
N(5)	3350(21	2171/27	109(2)	45(1)	N(6)	362612)	1562(2)	2536(2)	55(1)
N(7)	2098(2)	7630(2)	2444(2)	45(1)	N18)	1072(2)	6598(2)	3156(2)	48(1)
N(9)	1485(2)	7280(2)	883(2)	46(])	N(10)	87(2)	6101(2)	(528)2)	37(1)
N(11)	1726(2)	5621(2)	1848(2)	46(L)	N(121	173(2)	7879(2)	1840(2)	47(])
N(13)	781(3)	- 55(2)	1160(2)	80111	N(14)	63(2)	- 1464(2)	-114(2)	65(1)
N(15)	-1102(3)	-178(2)	556(2)	83+L)	N(16)	3650(2)	- 191(3)	4713(3)	88(1)
N(171	4857(2)	1458(21	4766(2)	75(1)	N(18)	5151(3)	- 166(2)	3756(2)	78(1)
C(1)	5251(2)	1442(2)	998(2)	55(1)	C(2)	5362(2)	2233(3)	1536(3)	66(1)
C(3)	4276(2)	193(2)	679(2)	57(1)	C14)	3519(3)	-189(2)	931(31	65(1)
C(5)	2563(3)	3179(3)	798(3)	93(2)	C(6)	2663(3)	2795(3)	44(2)	70(1)
C(7)	2685(4)	278014)	2211(3)	94(2)	C(8)	291513)	2053(3)	2739(3)	76(1)
C(9)	2400(2)	7293(3)	3233(2)	58(1)	C(10)	[69](2)	7145(3)	3640(2)	60(11
C(11)	2678(2)	7644+3)	1885(2)	54(1)	C(12)	2202(2)	7872(3)	[088(2)	58(1)
C(13)	359(2)	5348(2)	(100(2)	54(])	C(14)	1088(2)	4942(2)	1621(3)	59(1)
C(15)	~ 555(2)	6664(2)	[102(2)]	52(1)	C(16)	- 635(2)	7458(2)	1606(2)	54(1)
C(17)	1018(2)	- 85(2)	1813(2)	51(1)	C(18)	-156(2)	-2023(2)	-545(2)	49(1)
C(19)	-1668(3)	- 196(2)	829(2)	57(l)	C(20)	2988(3)	- 317(3)	4771(2)	57(1)
C(21)	4997(2)	2001(3)	4350(2)	57(1)	C(22)	5554(3)	- 86(2)	3286(2)	54(l)
O(1W)	3372(2)	-427(2)	2887(2)	99(l)					

表 \ 非氢原子坐标及热参数

Table 1 Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Thermal Parameters ($\dot{A}^{2} \times 10^{3}$)

.

· 311 ·

	Table 2	Selected Bond Distar	ices(Å) and A	ngle+°)	
$N_1(1) - N(1)$	2.058(3)	N((1)-N(2)	2.152(3)	N((1)-N(3)	2 15513)
Ni(1)-N(4)	2.065(3)	Ni(1)-N(5)	2.178(3)	Ni(1)-N(61	2.119(3)
Ni(2)-NH7)	2.072(3)	$N_1(2) - N(8)$	2.125{3}	Ni(2)-N(91	2.162(3)
Ni(2)-N(10)	2 068(2)	$N_1(2)(-N(11))$	2.16813>	NI(2) - N(12)	2.162(3)
Mn(1)-N(13)	2 197(4)	Mn(1)-N(14)	2 228(3)	Mn(1)-N(15)	2.221(4)
Mn(2).N(16)	2.223(4)	Ma(2) - N(17)	2,249(4)	Mn(2)-N(18)	2.226(4)
S(1)-C(17)	1.636(4)	S(2)-C(18)	(.605(4)	S(3)-C(19)	1.636(5)
S(4) - C(20)	1.623(5)	SI51-C(211	1.621(5)	S(6)-C1221	1.612(4)
N(13)-C(17)	1 133(5)	N+14)-C(18)	1,145(5)	N(15)-C(19)	1 133(5)
N(16)-C120}	1,132(5)	N(17)-C(21)	1 [42(5)	N(18(-C(22)	1.145(5)
N(1)-N(1)-N(2)	81 90(11)	N(1)-N((1)-N(3)	94, 23(13)	N(1)-Ni(1)-(4)	179-21(12)
N(1)-Ni(1)-N(4)	179 21(12)	N(1)-N(1)-N(5)	98.06(111	N(11-Ni11)-N(6)	98.22(12)
N(2)-Ni(1)-N(3)	163, ()8(11)	$N(2)-N_1(1)-N(4)$	97.42(12)	$N(2(-N_{\rm I})1)-N(5)$	88,25((1)
$N(2) - N_1 + 1 - N(6)$	92 01(12)	N(3)-Ni(1)-N(4)	99.23(13)	N(3)-Ni(1(-N(5)	91.20(12)
N(31-Ni11)-N(61	93.24(12)	$N(4)-N_{1}(1)-N(5)$	81.51(11)	$N(4)-N_1(1)-N(6)$	82 19(32)
N(5)-Ni(1)-N(6)	163.59(11)	$N(7(-N_1(2)-N(8)))$	81 88(11)	N(7)-Ni(21-N(9)	81.78(11)
N17)-Ni(2)-N110)	176.95(11)	N(7)-N(2)-N(11)	99. 54(11)	N(7)-Ni(2)-N(12)	98.15(11)
N18)-Ni(21-N19)	163 17((1)	N(8)-N((2)-N(10)	95.30H1()	N(8)-N(12)-N(11)	90 83(11)
N(8)-Ni(2)-N(12)	95 15((1)	N(9)-M(2)-N(10)	101 11(11)	$N(9)-N_1(2)-N(11)$	87 93(11)
N(9)-Ni(2)-N(12)	91 12(11)	N(101-N(12)-N(11)	81 63(10)	$N(10) - N_1(2) - N(12)$	80 88(10)
$N(11)-N_1(2)-N(12)$	[61.96[11]	N(13)-Mn(11-N(13)	180.012)	N(13)-Mu(1)-N(14A)	90, 85(13)
$N(13)-M_{B}(1)-N(15)$	89.76116)	N(13)-Mn(1)-N(14A)	89.15(13)	$N(13) - M_n(1) - N(15A)$	90.24(16)
N(14)-Mn(1)-N(14A)	180 0(2)	N(14)-Mn(1)-N(15)	88 40(13)	N114)-Mn(11-N(15B)	91,601131
N(151-Mn(1)-N(15A)	180.0{3}	N(16)-Mu(2)-N(16B)	180.0	N(16)-Mn(2)-N(17)	90, 96(15)
N([6)+Mn(2)-N(17B)	89 04(15)	N(1o)-Mn(2)-N(18)	92. 56(16)	N(16)-Mn(2)-N((8B))	87 44(16)
N(17)-Mn(2)-N((7B)	180.0(2)	N(17) - Mn(2) - N(18)	87 80((3)	$N(17)-M_{\rm B}(2)-N(18B)$	92,20(13)
N(18)-Mn(2)-N(18B)	180.0(3)	$C(1)-N(1)-N_1(1)$	108.312)	$C(2)=N(2)=N_1(1)$	107 8(2)
C(3)-N(1)-N(1)	107-6(2)	C(4)-N(3)-Ni(1)	(08, 8(2))	C(5)-N(4)-Ni(1)	(09, 4(2))
C(6)-N(5)-Ni([)	107.6(2)	$C(7)-N(4)-N_1(1)$	108.9(2)	C(81-N(6)-Ni(1)	(08, 0)(2)
C(9) - N(7) - Ni(2)	107 7(2)	C(10) - N(8) - N(2)	108, 8(2)	C(11)-N(7)-N((2))	107 6(3)
$C(12)-N(9)-N_1(2)$	108 1(2)	C(13)-N(10)-N((2)	108.2(2)	$C(14)-N(11)-N_1(2)$	107.3(2)
C(15)-N(10)-Ni(2)	109. 412)	C(16)-N(12)-N(12)	108.3(2)	C117)-N(13)-Mn(1)	164 5(4)
$C(18)-N(14)-M_{n}(1)$	141-1(3)	C(19)-N(15)-Mn(1)	177.814)	C120(-N(16)-Mn(2)	(62, 2(4)
$C(21) - N(17) - M_{II}(2)$	142.5(3)	C(22)-N(18)-Mn(2)	148 6(4)	N(13)-C(17)-S(1)	177.5(4)

表 2 部分原子间键长和键角

A. $-x_1 - y_2 - z_1$ B. $-x + 1_2 - y_2 - z + 1$

图 [配合物[Ni(dien)2]2[Mu(NCS)6]·H2O的分子结构 Fig. I – Molecular structure of $[\operatorname{Nitdien} t_2]_2[\operatorname{Mit}(\operatorname{NCS})_n]$ + $\operatorname{H_2O}$

图 2 配合物[Ni(dien)₂]₂[Mn(NCS)₆] · H₂O 的晶胞堆积图 Fig. 2 – Packing of $[Ni(dien)_2]_2[Mn(NCS)_5] + H_2O$ in unit cell

第18卷

的 SCN⁻, 这与前面讨论的晶体结构结果相一致。

配合物红外图谱中 3310cm⁻¹ 处的吸收峰可指 认为 NH 的伸缩振动峰,与自由配体二乙烯三胺分 子 NH 伸缩振动峰 3350cm⁻¹ 相比,该吸收峰向低波 数位移了 40cm⁻¹,这种变化可认为是 dien 分子的 N 原子与 Ni (II)配位引起的。

参考文献

- [1] Burmeister J. L. Coord. Chem. Rev., 1990, 105, 77.
- [2] Goher M. A. S., Yang Q., Mak T. C. W. Polyhedron, 2000, 19, 615.
- [3] Smith D. L., Saunders V. I. Acta Cryst., B37, 1981, 1807.
- [4] Zuo Jing-Lin, Fun Hoong-kun, Chinnakali K. et al Neu J. Chem., 1998, 923.

- [5] Ribas J., Diaz C., Costa R. et al Inorg. Chem., 1998, 37, 233.
- [6] Francese G., Ferlay S., Schmalle H. W. et al New J. Chem., 1999, 267.
- [7] International Tables for X-ray Crystallography, Vol IV, Kynoch Press: Birmingham, 1974.
- [8] Siemens, SHELXTL (Version 5.0), Siemens Industrial Automation Inc. Madison, USA, 1994.
- [9] Krautscheid H., Emig N., Klauassen N. et al J. Chem. Soc. Datton Trans, 1998, 3071.
- [10]Nakamoto K. (中本一雄)、Translated by HUANG De-Ru (黃德如)、WANG Ren-Qing(汪仁庆) Infrared and Raman Spectra of Inorganic and Coordination Compound, Third Edition(无机和配位化合物的红外和拉曼光谱), Beijung: Chemical Industry Press, 1986, p317.

Synthesis and Crystal Structure of [Ni(dien)₂]₂[Mn(NCS)₆] · H₂O

SHEN Liang*,1 XU Xun3 XU Duan-Jun2 XU Yuan-Zhi2

('Department of Chemistry, Hangzhou Teachers College, Hangzhou 310012)

(² Department of Chemistry, Zhejiang University, Hangzhou 310027)

(3 Research Section, Science College, Kyoto University, Kyoto 606-8502, Japan)

The crystal of [Ni(dien) 2] 2[Mn(NCS) 6] \cdot H₂O was synthesized and the structure of its single crystal was determined by X-ray diffraction. The crystal is monoclinic system, space group $P2_1/c$ with a = 16.544(3), b = 15.137(2), c = 17.334(3) Å, $\beta = 99.90(1)^\circ$, V = 4276.3(12) Å³, Z = 4, $D_c = 1.479$ g \cdot m⁻³, $M_r = 951.55$, F(000) = 1998, $\mu = 1.489$ mm⁻³, R = 0.0399, $R_s = 0.0958$. IR was also determined.

Keywords: thiocyanate diethylenetriamine polynuclear complex crystal structure