首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

2.
Li ZX  Guo YA 《Talanta》2005,65(5):1318-1325
A new and sample technique for the simultaneous determination of trace arsenic, antimony, bismuth and selenium in biologic samples by hydride generation-four-channel nondispersive atomic fluorescence spectrometry was development. The conditions of instrumentation and hydride generation of arsenic, antimony, bismuth and selenium were optimized. For reducing hexavalent Se to the tetravalent state was to heat the sample with 6 mol l−1 HCl, and then pre-reducing pentavalent As and Sb to the trivalent state was achieved by the addition of 0.05 mol l−1 thiourea. The interferences of coexisting ions were evaluated. Under optimal conditions, the detection limits for As, Sb, Bi and Se were determined to be 0.03, 0.04, 0.04 and 0.03 ng ml−1, respectively. The precision for seven replicate determinations at the 5 ng ml−1 of As, Sb, Bi and Se were 0.9, 1.2, 1.3 and 1.5% (R.S.D.), respectively. The proposed method was successfully applied to the simultaneous determination of As, Sb, Bi and Se in a series of Chinese certified biological reference materials using simple aqueous standard calibration technique, the results obtained are in good agreement with the certified values.  相似文献   

3.
A HPLC method with automated column switching and UV-diode array detection is described for the simultaneous determination of Vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in a sample of human plasma. The system uses a BioTrap precolumn for the on-line sample cleanup. A sample of 1 ml of human plasma was treated with 2 ml of a mixture of ethanol–acetonitrile (2:1 (v/v)). Following centrifugation, the supernatant was evaporated to dryness under a stream of dry and pure nitrogen. The residue was reconstituted in 250 μL of a solution of methanol 5 mmol l−1 phosphate buffer, pH 6.5 (4:1 (v/v)), and a 200 μl aliquot of this solution was injected onto the BioTrap precolumn. After washing during 5 min with a mobile phase constituted by a solution of 6% acetonitrile in 5 mmol l−1 phosphate buffer, pH 6.5 (extraction mobile phase), the retained analytes were then transferred to the analytical column in the backflush mode. The analytical separation was then performed by reverse-phase chromatography in the gradient elution mode with the solvents A and B (Solvent A: acetonitrile–phosphate buffer 5 mmol l−1, pH 6.5; 20:80 (v/v); solvent B: methanol–acetonitrile–tetrahydrofuran, 65:20:15 (v/v)). The compounds of interest were detected at 265 nm. The method was linear in the range 3.0–32.0 ng ml−1 with a limit of quantification of 3.0 ng ml−1. Quantitative recoveries from spiked plasma samples were between 91.0 and 98.0%. In all cases, the coefficient of variation (CV) of the intra-day and inter-day-assay precision was ≤2.80%. The proposed method permitted the simultaneous determination of Vitamin D3 and 25-OH-D3 in 16 min, with an adequate precision and sensitivity. However, the overlap of the sample cleanup step with the analysis increases the sampling frequency to five samples h−1. The method was successfully applied for the determination of Vitamin D3 and 25-OH-D3 in plasma from 46 female volunteers, ranging from 50 to 94 years old. Vitamin D3 and 25-OH-D3 concentrations in plasma were found from 4.30–40.70 ng ml−1 (19.74 ± 9.48 ng ml−1) and 3.1–36.52 ng ml−1 (7.13 ± 7.80 ng ml−1), respectively. These results were in good agreement with data published by other authors.  相似文献   

4.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

5.
Flow injection determination of nitrite by fluorescence quenching   总被引:2,自引:0,他引:2  
A simple, sensitive and selective fluorimetric method for the determination of nitrite ion in waters using a merging zones flow injection system is described. The fluorimetric determination is based on the measurement of the quenching effect produced by nitrite on proflavine (3,6-diaminoacridine) fluorescence (λexem=290/519 nm).

The optimum experimental conditions were investigated by merging 0.5 ml of the sample and 0.5 ml of a solution of 5 mg l−1 of proflavine (in 0.1 M HCl) in a flow injection system, on-line connected to a flow-cell placed in the conventional sample compartment of a spectrofluorimeter. The selected carrier solution and final flow rate were 0.1 M HCl and 0.5 ml min−1, respectively. A reaction coil of 2 ml was used. As a result of the simplicity of this system, a sample throughput of about 50 samples h−1 can be achieved with the proposed methodology.

The detection limit was 1.1 ng ml−1 (3σ criterion) of nitrite. The repeatability for five sample injections containing 100 ng ml−1 of nitrite was ±0.3% and the observed linear range extended up to 400 ng ml−1. Also, the effect of interferences from various metals and anions commonly present in waters was also studied.

The method was successfully applied to the determination of low levels of nitrite in different water samples (river, fountain, tap and commercial drinking waters).  相似文献   


6.
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l−1 HCl for Se(IV) and 12 mol l−1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0–120 and 0–100 μg l−1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l−1 for Se(IV) and 1.5 μg l−1 for Se(VI). The precision (about 2.0–2.5% RSD) and recoveries (96–98% for Se(IV) and 94–98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.  相似文献   

7.
Polystyrene–divinylbenzene (8%) has been functionalised by coupling it through an ---N=N--- group with 6-mercaptopurine. The resulting chelating resin has been characterised by using elemental analysis, thermogravimetric analysis and infrared spectra. The resin is highly selective for Hg(II) and Ag(I) and has been used for preconcentrating Hg(II) and Ag(I) prior to their determination by atomic absorption spectrometry. The maximum sorption capacity for Hg(II) and Ag(I) was found to be 1.74 and 0.52 mmol g−1, respectively, over the pH range 5.5–6.0. The calibration range for Hg(II) was linear up to 10 ng ml−1 with a 3σ detection limit of 0.02 ng ml−1; the calibration range for Ag(I) was linear up to 5 μg ml−1 with a detection limit of 29 ng ml−1. The recoveries of the metals were found to be 99.7±3.8 and 101.3±4.1% at the 95% confidence level for both Hg(II) and Ag(I). In column operation, it has been observed that Hg(II) and Ag(I) in trace quantities can be selectively separated from geological, medicinal and environmental samples.  相似文献   

8.
An inductively coupled plasma mass spectrometer (ICP-MS) was used as an ion chromatographic (IC) detector for the speciation analysis of arsenic and selenium. The arsenic and selenium species studied included arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), selenite [Se(IV)] and selenate [Se(VI)]. Gradient elution using (NH4)2CO3 and methanol at pH 9 allowed the chromatographic separation of all species in less than 12 min. Effluents from the IC column were delivered to the nebulization system of ICP-DRC-MS for the determination of arsenic and selenium. The potentially interfering 38Ar40Ar+ and 40Ar40Ar+ at the selenium masses m/z 78 and 80 were reduced in intensity by approximately 3 orders of magnitude by using 0.6 mL min−1 CH4 as reactive cell gas in the DRC while an Rpq value of 0.3 was used. Meanwhile, arsenic was determined as the adduct ion 75As12CHH+ at m/z 89, which is more sensitive than 75As. The limits of detection for arsenic and selenium were in the range of 0.002–0.01 ng mL−1 and 0.01–0.02 ng mL−1, respectively, based on peak height. The relative standard deviation of the peak areas for five injections of 5 ng mL−1 As and Se mixture was in the range of 2–4%. The concentrations of arsenic and selenium species have been determined in urine samples collected locally. The major As and Se species in urines were AsB, DMA and probably selenosugar at concentration of 20–40, 15–19 and 17–31 ng mL−1, respectively. The recoveries were in the range of 94–105% for all the determinations. This method has also been applied to determine various arsenic compounds in two fish samples. In this study, a simple and rapid microwave-assisted extraction method was used for the extraction of arsenic compounds from fish. The arsenic species were quantitatively leached with an 80% v/v methanol solution in a focused microwave field during a period of 5 min.  相似文献   

9.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

10.
Zaijun L  Qijun S  Zhengwei C  Qin W  Juan Z 《Talanta》2005,65(5):1307-1312
A highly sensitive and selective method has been developed for spectrophotometric determination of boron in plants, the method based on the color reaction of new reagent 1-(2,3,4-trihydroxybenzylideneamino)-8-hydroxynaphthalene-3,6-disulfonic acid (THBA) with boron (III). In an ammonium acetate solution of pH 8.0, boron(III) reacts with THBA to form a 1:2 yellow complex which has a maximum absorption peak at 430 nm. The reaction can complete within 90 min and the absorbance of the complex remains maximum and almost constant at least for 24 h under a temperature range from 0 to 35 °C. The apparent molar absorptivity and Sandell's sensitivity are 2.95 × 104 l mol−1 cm−1 and 0.00036 ng cm−2, respectively. The limit of quantification, limit of detection and relative standard deviations were found to be 5.1, 1.5 ng ml−1 and 1.12%, respectively. Under the optimum conditions, the absorbency of the complex (λmax = 430 nm) increases linearly with concentration up to 0.8 μg ml−1 of boron(III). The influences of foreign ions on the determination of boron were investigated in detail. Most of foreign ions can be tolerated in considerable amounts. Experiments have indicated that THBA as chromogenic reagent for spectrophotometric determination of boron has excellent analytical characteristics. Its sensitivity is more than 4.2-fold that of azomethine-H, and stability is advantage over other derivatives of azomehine-H remarkably. Moreover, the synthesis of THBA and its physicochemical properties of THBA were also investigated in detail. Proposed method has been applied to the determination of boron in plants with satisfactory results.  相似文献   

11.
Nakano S  Sakamoto K  Takenobu A  Kawashima T 《Talanta》2002,58(6):1263-1270
A flow-injection chemiluminescent (CL) method is proposed for the successive determination of nanogram levels of vanadium(IV) and total vanadium. The method is based on the catalytic effect of vanadium(IV) on the oxidation of purpurogallin by periodate to produce light emission at 4 °C. The presence of hydrogen carbonate enhanced the light emission arising from the vanadium(IV)-catalyzed reaction. Since vanadium(V) did not catalyze the CL reaction of purpurogallin, vanadium(V) was determined after being reduced to vanadium(IV) by using an on-line silver-reducing column. Calibration curves for vanadium(IV) and (V) were linear in the range 0.1–10 ng ml−1 with sampling rate of about 50 h−1. The limit of detection for signal-to-noise ratio of 2 was 0.05 ng ml−1 and the relative standard deviations were 1.4 and 1.6% for ten determinations of 2.0 ng ml−1 vanadium(IV) and (V), respectively. Interferences from metal ions could be eliminated by the use of O,O′-bis(2-aminoethyl)ethyleneglycol- N,N,N′,N′-tetraacetic acid and diphosphate as masking agents. The proposed method was successfully applied to the determination of vanadium(IV) and total vanadium in fresh water samples.  相似文献   

12.
Solid-phase spectrophotometry (SPS) technique, in the visible region, was used for the spectrophotometric determination of ascorbic acid based on the reducing effect on iron(III) ion, followed by formation of the iron(II)-ferrozine chelate. The chelate is easily sorbed on a dextran-type anion-exchange gel and the absorbance of the resin at 567 and 800 nm, packed in a 1 mm cell, is measured directly. The apparent molar absorptivity using 100 ml of sample was 2.1×107 l mol−1 cm−1 and it allowed the determination of ascorbic acid in the range 5–90 ng ml−1; the detection limit was 0.91 ng ml−1 and the RSD 0.91% for a concentration of 50 ng ml−1 of ascorbic acid (n=10). The proposed method permits a highly sensitive and selective determination of ascorbic acid without any preconcentration and it has been satisfactorily applied for its determination in fruit juices, pharmaceuticals, urine and conservative liquids.  相似文献   

13.
Yun Fei Long  Cheng Zhi Huang   《Talanta》2007,71(5):1939-1943
The interaction of Amido black 10B (AB) with DNA in basic medium was studied in the presence of cetyltrimethylammonium bromide (CTMAB) based on the measurements of resonance light scattering (RLS), UV–vis, CD spectra, and RLS imaging. The interaction has been proved to give a ternary complex of CTMAB–DNA–AB in Britton–Robinson buffer of pH 11.55, which exhibits strong negative Cotton effect at 233.3 nm and 642.8 nm, and strong RLS signals characterized at 469 nm. Experiments showed that the enhanced RLS intensities (ΔIRLS) against the mixture of AB and CTMAB are proportional to the concentration of fish sperm DNA (fsDNA) and calf thymus DNA (ctDNA), respectively over the range of 0.03–1.0 and 0.05–1.5 μg ml−1, with the limits of determination (3σ) of 7.3 ng ml−1 for fsDNA and 7.0 ng ml−1 for ctDNA.  相似文献   

14.
Development of an enzyme-linked immunosorbent assay for pentachlorophenol   总被引:5,自引:0,他引:5  
Pentachlorophenol (PCP) is a hazardous pollutant with toxicity and potential carcinogenic properties being a serious threat to the environment. In this work, the development of an immunoassay for PCP is presented. A hapten was synthesised and conjugated to protein for rabbit immunisation. Three polyclonal antibodies were obtained and the best results were achieved in the antibody-coated format using antiserum R3. Calibration range was 0.3–30.5 ng ml−1, with an average I50 value of 2.9 ng ml−1 and a detection limit of 0.1 ng ml−1. The specificity of the assay was tested against PCP structurally related compounds. The method is highly specific for PCP and shows low cross-reactivity (CR) for chlorine-containing phenols, nitrophenols, benzenic and piridinic compounds. The good recoveries achieved with different water samples indicate that this assay can be a good alternative method for the determination of PCP in this kind of samples.  相似文献   

15.
Li S  Deng N  Zheng F  Huang Y 《Talanta》2003,60(6):1097-1104
The adsorption of W (VI) on different metal oxides (TiO2, ZrO2), different crystal form of TiO2 (rutile, anatase) with high surface areas was studied and compared under different pH. A novel method for preconcentration of W (VI) with nanometer size titanium dioxide (rutile) and determination by spectrophotometry has been developed. W (VI) was selective adsorbed on 100 mg TiO2 from 250 ml solution at pH 3.0, then eluted by 2 ml 9 mol l−1 sodium hydroxide solution. The eluent was adjusted to 5 ml pH 0 solution, added 0.5 ml 12 mol l−1 HCl, 0.3 ml 3% TiCl3, 0.3 ml 50% NH4SCN, stirred for 20 min, used for the analysis of W (VI) by measuring the absorbance at 402 nm with spectrophotometry, based on the chromogenic reaction between the W (VI) and the mixture of TiCl3 and NH4SCN. This method gave a concentration enhancement of 50 for 250 ml sample, eliminated the sizable interferences on direct determination with spectrophotometry. Detection limits (3σ, n=11) of 1.2 ng ml−1, relative standard deviation of 2.3% at 10 ng ml−1 level were obtained. The method was applied to determine the W (VI) in hot spring water, river water, tap water and stream sediment. Analytical recoveries of W (VI) added to samples were 98–101%.  相似文献   

16.
Vanadium(V) is determined by a simple bead injection spectroscopy–flow-injection analysis (BIS–FIA) system with spectrofluorimetric detection using a commercially available flow cell (Hellma 176-QS). The 500 μl of a homogeneous bead suspension of an anionic resin (Sephadex QAE A-25) previously loaded with the fluorogenic reagent 1,2-dihydroxyanthraquinone-3-sulfonic acid (Alizarin Red S) was injected to fill the flow cell. Next, V(V) is injected into the carrier and reacts with the immobilized reagent on the active solid support placed in the flow cell to form a fluorescent chelate in the absence of surfactant agents. The complex is so strongly retained on the beads that the regeneration of the solid support becomes extraordinarily difficult, so needing the renovation of the sensing surface which is achieved by means of bead injection. At the end of the analysis, beads are automatically discarded from the flow cell and transported out of the system by reversing the flow.

The measurement of fluorescence is continuously performed at an excitation wavelength of 521 nm and an emission wavelength of 617 nm. Using a low sample volume of 800 μl, the analytical signal showed a very good linearity in the range 2–60 ng ml−1, with a detection limit of 0.45 ng ml−1 and a R.S.D. (%) of 4.22 for 50 ng ml−1 of V(V) concentration (n = 10). The sensor showed both a good selectivity, which could also be increased by the addition of EDTA and F as masking agents, and applicability to the determination of V(V) in waters, physiological samples (serum and urine) and mussel tissues.  相似文献   


17.
A new assay of nucleic acids at nanogram level was established based on the enhanced resonance light scattering (RLS) signals of two zwitterionics cocamidopropyl hydroxysultaine (HSB) and lauryl betaine (BS-12). Under optimum conditions, the weak RLS signal of HSB is enhanced by nucleic acids, and the enhanced RLS intensity is proportional to the concentration of nucleic acids in the range of 0.02–7.3 mg l−1 for calf thymus DNA and 0.01–8.6 mg l−1 for fish sperm DNA. The detection limits were 1.5 ng ml−1 for calf thymus DNA and 1.9 ng ml−1 for fish sperm DNA. Plasmid DNA extracted from K-12-HB101 colt was determined with satisfactory results.  相似文献   

18.
Duan H  Liu Z  Liu S  Yi A 《Talanta》2008,75(5):1253-1259
Under the HCl solution and heating condition, penicillin antibiotics such as amoxicillin (AMO), ampicillin (AMP), sodium cloxacillin (CLO), sodium carbenicillin (CAR) and sodium benzylpenicillin (BEN) could react with Fe(III) to produce Fe(II) which further reacted with Fe(CN)63− to form a Fe3[Fe(CN)6]2 complex. By virtue of hydrophobic force and Van der Waals force, the complex aggregated to form Fe3[Fe(CN)6]2 nanoparticles with an average diameter of 45 nm. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) and non-linear scattering such as second-order scattering (SOS) and frequency doubling scattering (FDS). The increments of scattering intensity (ΔI) were directly proportional to the concentrations of the antibiotics in a certain range. The detection limits for the five penicillin antibiotics were 2.9–6.1 ng ml−1 for RRS method, 4.0–6.8 ng ml−1 for SOS method and 7.4–16.2 ng ml−1 for FDS method, respectively. Among them, the RRS method exhibited the highest sensitivity and the AMO system was more sensitive than other antibiotics systems. Based on the above researches, a new highly sensitive and simple method for the indirect determination of penicillin antibiotics has been developed. It can be applied to the determination of penicillin antibiotics in capsule, tablet, human serum and urine samples. In this work, the spectral characteristics of absorption, RRS, SOS and FDS spectra, the optimum conditions of the reaction and the influencing factors were investigated. In addition, the reaction mechanism was discussed.  相似文献   

19.
A catalytic flow-injection (FI) method was developed for the determination of 10−9 mol l−1 levels of vanadium(IV, V). The method is based on the catalytic effect of vanadium(V) on oxidation of N-(3-sulfopropyl)-3,3′,5,5′-tetramethylbenzidine (TMBZ·PS) using bromate as oxidant to form a yellow dye (λmax=460 nm). The use of 5-sulfosalicylic acid (SSA) as an activator enhanced the sensitivity of the method. The calibration graphs with a working range 0.05–8.0 ng ml−1 were obtained for vanadium(V). Vanadium(IV) was also determined, being oxidized by bromate. The detection limit (signal/noise, S/N=3) was 0.01 ng ml−1 (ca. 2×10−10 mol l−1) vanadium. The relative standard deviations (R.S.D.) for 15 determinations of 0.5 ng ml−1 vanadium, and for ten determinations of 0.1 and 1.0 ng ml−1 vanadium were 0.41, 2.6 and 0.25%, respectively, with a sampling rate of 15 samples h−1. The proposed method was successfully applied to the determination of vanadium in natural waters.  相似文献   

20.
Muzikar M  Fontàs C  Hidalgo M  Havel J  Salvadó V 《Talanta》2006,70(5):1081-1086
A new matrix separation/preconcentration method is developed for the on-line determination of palladium(II) and platinum(IV) in complex matrices using a sequential ICP-OES instrument. These metals are preconcentrated in a microcolumn packed with Metalfix-Chelamine, a polymeric functionalised resin containing the tetraethylenepentamine group. The hydrodynamic and chemical conditions of the flow system affecting the loading and elution steps are optimised off-line using a mixture of 1.0 mol L−1 thiourea and 2.0 mol L−1 NaClO4 in 4.0 mol L−1 HCl which proved to be the most effective solution for the simultaneous elution of Pd(II) and Pt(IV). High enrichment factors of nearly 35 are achieved for both metals and the detection limits (LOD) are 22 ng L−1 for platinum and 2.5 ng L−1 for palladium. The accuracy of the method was tested by analysing a used pellet catalyst (certified reference material NIST 2556) and trace metal solutions resulting from the leaching of this material. Despite the fact that this CRM contains zirconium and large amounts of aluminium and lead, a high level of agreement was achieved demonstrating the efficiency of the resin in eliminating interfering elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号