首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
通过脱苄基和酯化反应,在聚(γ-苄基L-谷氨酸酯)-b-聚乙二醇(PBLG-b-PEG)嵌段共聚物的PBLG嵌段侧基修饰上可光交联的肉桂酰氧基,得到聚(γ-苄基L-谷氨酸酯-co-肉桂基L-谷氨酸酯)-b-聚乙二醇(P(BLG/CLG)-b-PEG)嵌段共聚物。将P(BLG/CLG)-b-PEG分别与PBLG均聚物、聚苯乙烯(PS)均聚物共混自组装,制备出具有核-壳结构的棒状和球状仿病毒粒子(VLPs),其中,均聚物形成棒状或球状内核,嵌段共聚物构成外壳。利用紫外光照射交联CLG链段固定VLPs壳结构,以N,N′-二甲基甲酰胺(DMF)溶解去除均聚物内核,制备中空仿病毒粒子(HVLPs)。采用扫描电镜、透射电镜表征了组装体的微观形貌。研究表明:DMF可以溶解去除球状VLPs的PS均聚物内核,制备出表面具有条纹的球状HVLPs;而棒状VLPs的PBLG均聚物内核不能被DMF溶解去除。以阿霉素(DOX)为模型药物,研究了球状HVLPs的载药性能,其对DOX的相对载药量可以达到230%,在pH=7.4时72 h药物累计释放量达到80%。  相似文献   

2.
聚谷氨酸苄酯-聚乙二醇嵌段共聚物的合成和表征   总被引:11,自引:0,他引:11  
通过嵌段共聚技术,合成了聚γ-苄基L-谷氨酸(PBLG)作为疏水性链段-聚乙二醇(PEG)作为亲水性链段的嵌段共聚物。用对甲苯磺酸酯化-氨水皂化法合成带有端氨基的聚乙二醇(AT-PEG),光气-甲苯液相法制备谷氨酸苄酯-N-羟酸酐(BLG-NCA)。用AT-PEG引发BLG-NCA聚合制备PBLG-PEG或PBLG-PEG-PBLG,通过不同的单体、引发剂浓度比调节聚合物分子量。用GPC、^1HNMR、IR对聚合物的结构进行了表征。结果表明,带有端氨基的聚乙二醇确实能引发BLG-NCA生成PBLG和PEG的嵌段共聚物,产物中几乎没有残存的PEG,共聚物的分子量可控。  相似文献   

3.
合成了两亲性的聚(γ-苄基-L-谷氨酸酯)-b-聚乙二醇(PBLG-b-PEG)聚肽刚-柔嵌段共聚物和聚苯乙烯(PS)均聚物及多种聚苯乙烯衍生物,包括聚(4-乙酰氧基苯乙烯)(PAS)均聚物、聚(4-羟基苯乙烯)(PVPh)均聚物和聚(苯乙烯-co-4-乙酰氧基苯乙烯)(P(S-co-AS))共聚物.用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)等表征了聚合物的结构、分子量及分布.采用共溶剂溶解、选择性溶剂透析的方法,制备了PBLG-b-PEG嵌段共聚物与不同PS衍生物(包括PS均聚物)共混体系的自组装聚集体,利用透射电子显微镜(TEM)和扫描电子显微镜(SEM)等表征了自组装体的形貌和结构.研究发现,不同的分子间相互作用(如π-π共轭作用、偶极-偶极相互作用、氢键作用等)对共混体系的自组装形貌有显著的影响.PBLG-b-PEG/PS共混体系自组装可形成表面具有条纹结构的"毛线球"聚集体,该体系中PBLG和PS之间形成π-π共轭作用,相互作用强度相对较弱;PBLG-b-PEG/PAS共混体系自组装可形成表面基本光滑并有轻微凹陷的球形聚集体,该体系中PBLG和PAS之间除了π-π共轭作用,还可形成相对较强的偶极-偶极相互作用;而PBLG-b-PEG/PVPh共混体系自组装得到了囊泡,该体系中PBLG与PVPh之间可形成π-π共轭和氢键作用,相互作用强度进一步增强.对于PBLG-b-PEG/P(S-co-AS)共混体系,可通过改变P(S-co-AS)共聚物中AS摩尔分数和制备温度来调控自组装聚集体表面的条纹形貌.根据PBLG链段与不同PS衍生物(包括PS均聚物)之间不同的分子间相互作用,提出了上述聚集体形貌转变的机理.  相似文献   

4.
用三乙胺和双端氨基聚乙二醇分别引发经酯化、环化等处理的谷氨酸开环聚合制备聚谷氨酸苄酯(PBLG)和聚谷氨酸苄酯-聚乙二醇-聚谷氨酸苄酯嵌段共聚物(PBLG-PEG-PBLG,GEG)。采用圆二色光谱对聚合物溶液的旋光性进行分析,以确定共聚物中PBLG嵌段的构型和含量。结果表明,均聚物和共聚物中的PBLG嵌段都以α-螺旋构型存在,中间的PEG不扰乱其构型,通过聚合物的圆二色性(circular dichroism,CD)计算出的PBLG嵌段含量与核磁共振(nuclear magnetic resonance,NMR)所得结果基本一致。  相似文献   

5.
通过开环反应,合成了聚(L-谷氨酸-γ-苯甲酯)-b-聚乙二醇-b-聚(L-谷氨酸-γ-苯甲酯)(PBLG-b-PEG-b-PBLG)三嵌段聚肽共聚物。运用核磁共振氢谱和凝胶渗透色谱表征了聚合物的结构。凝胶渗透色谱测试表明合成的聚合物分子量分布窄。以选择性溶剂透析的方法制备了自组装聚集体,通过透射电子显微镜、扫描电子显...  相似文献   

6.
以单甲氧基聚乙二醇伯胺(m PEG-NH2)作为大分子引发剂,引发γ-炔丙基-L-谷氨酸-N-羧基-环内酸酐(NCA)开环聚合的方法,合成了侧链上含有炔基的聚乙二醇-b-聚(γ-炔丙基-L-谷氨酸)两嵌段共聚物(PEG-b-PPLG).进一步通过巯基-炔基加成的"点击"化学方法,对两嵌段共聚物中聚氨基酸PPLG嵌段分别修饰了普通疏水性的饱和烷烃、具有超疏水性质的全氟代烷烃,并利用红外光谱、圆二色光谱、动态光散射和透射电子显微镜等技术,对合成的两嵌段共聚物在水溶液及有机溶剂四氢呋喃(THF)中的自组装性质进行了研究.研究发现两嵌段共聚物修饰前后,聚氨基酸嵌段在水和THF中都能保持一定的α-螺旋的构象,并进一步自组装形成以α-螺旋的聚氨基酸嵌段为内核、PEG嵌段为外壳的纳米聚集结构.  相似文献   

7.
研究了由温敏的聚(2-乙基-2-噁唑啉)和pH值敏感的聚(L-谷氨酸)组成的三嵌段共聚物,聚(2-乙基-2-噁唑啉)-b-聚(ε-己内酯)-b-聚(L-谷氨酸)的合成方法,(1)以对甲苯磺酸甲酯为引发剂引发2-乙基-2-噁唑啉进行正离子开环聚合反应,得到了羟基封端的聚(2-乙基-2-噁唑啉)(PEOz-OH);(2)以PEOz-OH为引发剂,以辛酸亚锡为催化剂,在氯苯中合成了PEOz-b-聚(ε-己内酯)两嵌段共聚物(PEOz-b-PCL-OH);(3)将PEOz-b-PCL-OH末端的羟基转换为氨基,得到氨基封端的两嵌段共聚物(PEOz-b-PCL-NH2);(4)以PEOz-b-PCL-NH2为引发剂引发γ-苄基-L-谷氨酸-N-羧酸酐(BLG-NCA)开环聚合,得到了PEOz-b-PCL-b-聚(γ-苄基-L-谷氨酸)(PEOz-b-PCL-b-PBLG)三嵌段共聚物;(5)以HBr的醋酸溶液为脱保护剂脱去苄基保护基,得到PEOz-b-PCL-b-聚(L-谷氨酸)(PEOz-b-PCL-b-PLGlu)三嵌段共聚物.采用1H-NMR、GPC和FT-IR表征了各步聚合物的结构、分子量和分子量分布.  相似文献   

8.
研究了由温敏的聚(2-乙基-2-噁唑啉)和pH值敏感的聚(L-谷氨酸)组成的三嵌段共聚物,聚(2-乙基-2-噁唑啉)-b-聚(ε-己内酯)-b-聚(L-谷氨酸)的合成方法,(1)以对甲苯磺酸甲酯为引发剂引发2-乙基-2-噁唑啉进行正离子开环聚合反应,得到了羟基封端的聚(2-乙基-2-噁唑啉)(PEOz-OH);(2)以PEOz-OH为引发剂,以辛酸亚锡为催化剂,在氯苯中合成了PEOz-b-聚(ε-己内酯)两嵌段共聚物(PEOz-b-PCL-OH);(3)将PEOz-b-PCL-OH末端的羟基转换为氨基,得到氨基封端的两嵌段共聚物(PEOz-b-PCL-NH2);(4)以PEOz-b-PCL-NH2为引发剂引发γ-苄基-L-谷氨酸-N-羧酸酐(BLG-NCA)开环聚合,得到了PEOz-b-PCL-b-聚(γ-苄基-L-谷氨酸)(PEOz-b-PCL-b-PBLG)三嵌段共聚物;(5)以HBr的醋酸溶液为脱保护剂脱去苄基保护基,得到PEOz-b-PCL-b-聚(L-谷氨酸)(PEOz-b-PCL-b-PLGlu)三嵌段共聚物.采用1H-NMR、GPC和FT-IR表征了各步聚合物的结构、分子量和分子量分布.  相似文献   

9.
《高分子学报》2017,(2):266-273
分别以叠氮丙胺和丙炔胺为引发剂,采用氨基酸环内酸酐开环聚合法(NCA-ROP),引发L-谷氨酸-γ-苄酯-N-羧基-环内酸酐和L-谷氨酸-γ-氯乙醇酯-N-羧基-环内酸酐聚合得到链端基为叠氮基的聚(L-谷氨酸-γ-苄酯)(PBLG)和链端基为炔基的聚(L-谷氨酸-γ-氯乙醇酯)(PCELG)均聚物.联合点击化学法(click chemistry)制备了一系列聚(L-谷氨酸-γ-苄酯)-b-聚(L-谷氨酸-γ-氯乙醇酯)(PBLG-b-PCELG),再通过对嵌段共聚物侧基氯进行化学修饰,将二代的甲基烷氧醚类亲水性树形枝化分子(G2)接枝到侧链上,形成一系列树形支化分子接枝聚肽双亲性嵌段共聚物,通过核磁(NMR)、红外光谱(IR)和凝胶渗透色谱(GPC)对其化学结构进行了表征,并采用紫外-可见光谱(UV-Vis)研究了聚合物结构及其溶液浓度对其温敏行为的影响规律.  相似文献   

10.
用单氨基聚乙二醇(m PEG-NH2)引发ε-三氟乙酰基-L-赖氨酸-N-羧酸酐(Lys(TFA)-NCA)开环聚合,得到了聚乙二醇-b-聚(ε-三氟乙酰基-L-赖氨酸)(PEG-b-PTLL)两嵌段共聚物.将PTLL链段末端的NH2与2-溴异丁酰溴反应得到了大分子引发剂,通过原子转移自由基聚合(ATRP)的方法分别分别引发苯乙烯(St)和N-异丙基丙烯酰胺(NIPAM)聚合,制备了结构明确、聚合度可控的聚乙二醇-b-聚(ε-三氟乙酰基-L-赖氨酸)-b-聚苯乙烯(PEG-b-PTLL-b-PS)和聚乙二醇-b-聚(ε-三氟乙酰基-L-赖氨酸)-b-聚(N-异丙基丙烯酰胺)(PEG-b-PTLL-b-PNIPAM)三嵌段杂化共聚肽.将PEG-b-PTLL-b-PNIPAM去保护后得到温度和p H响应三嵌段共聚物;将PEG-b-PTLL-b-PS去保护后得到p H响应的两亲性三嵌段共聚物.研究了PEG45-b-PLL106-b-PS20在混合溶剂H2O/DMF中的p H诱导胶束化行为.TEM结果表明,当水溶液p H小于PLL的p Ka时,PEG45-bPLL106-b-PS20形成球状胶束,当水溶液p H大于PLL的p Ka时,PLL转变成α-螺旋,PEG45-b-PLL106-b-PS20组装成盘状胶束.  相似文献   

11.
以末端带胺基的聚苯乙烯(PS-NH2)为引发剂,利用N-羧酸内酸酐(N-carbonyl anhydride,NCA)法制备一种刚柔二嵌段共聚物聚苯乙烯-b-聚(γ-苄基-L-谷氨酸酯)(polystyrene-b-poly(γ-benzyl-L-glutamate),PS-b-PBLG)杂化聚肽,并研究该聚肽嵌段共聚物的分子结构、热性能、液晶性与自组装形貌的溶剂效应.以氢核磁共振波谱(1H-NMR)和凝胶渗透色谱仪(GPC)表征两嵌段的摩尔比、分子量及其分布.利用示差扫描量热分析仪(DSC)与光学显微镜(POM)考察材料的热性质与液晶性.由小角X射线散射(SAXS)分析得知,两嵌段组分呈交替分布层状结构,聚肽层中α螺旋链在不同溶剂中会发生不同程度折叠;通过透射扫描电镜(TEM)清楚观察到PS-b-PBLG在1,2-二氯乙烷(EDC)中α螺旋折叠形成了条纹式层状形貌,不同于1,1,2,2-四氯乙烷(TCE)中α螺旋完全伸展形成的锯齿式层状形貌.  相似文献   

12.
在材料表面构筑聚合物多级结构可以显著提升其性能并赋予新的性能,但是目前已有的制备方法较为繁琐,需要开发简单易行的新方法。结合聚苯乙烯(PS)的可控蒸发组装和聚(γ-苄基-L-谷氨酸酯)-聚乙二醇(PBLG-b-PEG)刚-柔嵌段共聚物溶液自组装方法,在硅片表面构建了梯度排列且表面具有纳米条纹的微米圆盘多级结构。采用光学显微镜、原子力显微镜(AFM)和接触角测量仪等对微结构形貌及硅片的表面润湿性进行了表征。PS溶液经可控蒸发自组装在硅片表面形成梯度变化的微米圆点图案,经热处理及溶剂清洗后,得到微米圆盘。通过溶液自组装方法,PBLG-b-PEG在PS微米圆盘表面形成有序排列的周期性纳米条纹。材料的接触角随着图案表面微结构从半球状圆点到表面平整的圆盘再到表面带有纳米条纹的圆盘的变化持续降低。  相似文献   

13.
两亲性聚肽嵌段共聚物具有良好的生物相容性、生物安全性和可生物降解性,其在选择性溶剂中自组装形成的胶束在药物控释载体方面有着良好的应用前景[1~4].Cho等研究了聚(L-谷氨酸-γ-苯甲酯)(PBLG)-聚氧化乙烯(PEO)嵌段共聚物(PBLG-b-PEO)在水中的自组装性能,发现PBLG-b-PEO在水  相似文献   

14.
采用开环聚合、发散法以及"点击化学法"合成了线型-树状聚两性电解质.首先通过γ-苄基-L-谷氨酸酯羧酸酐(BLG-NCA)的开环聚合及发散合成法分别合成了叠氮端基聚(γ-苄基-L-谷氨酸酯)(PBLG-N3)及以炔基为内核的带有4个伯氨端基的第2.0代聚酰胺-胺(PAMAM-D2),再将二者通过"点击反应"制备的线型-树状嵌段共聚物PBLG-b-D2作为大分子引发剂,利用其末端氨基引发ε-苄氧羰基-L-赖氨酸羧酸酐(ZLL-NCA)的开环聚合,获得线型-树状嵌段共聚物PBLG-b-D2-(PZLL)4,再经酸解脱除PBLG上的苄基及PZLL上的苄氧羰基,获得目标产物聚(L-谷氨酸)-b-聚[酰胺-胺-聚(L-赖氨酸)](PLGA50-b-D2-(PLL9)4)线型-树状聚两性电解质.通过核磁(1H-NMR)、傅里叶变换红外光谱(FTIR)和凝胶渗透色谱(GPC)表征了聚合物分子结构、分子量及其分布;通过电导滴定法、1H-NMR、zeta电位、激光光散射(LLS)、扫描电子显微镜(SEM)及圆二色谱(CD)等方法研究了PLGA50-b-D2-(PLL9)4对溶液pH值响应性.结果表明随溶液pH由酸性转变为碱性,PLGA50-b-D2-(PLL9)4显示出了多重胶束化行为,同时不对称的线型-树状分子拓扑结构影响了聚集体的形貌,在酸性pH值下形成以PLGA为核的球形胶束,而在碱性pH值下形成以PLL为核的棒状胶束,并分别伴随着PLGA及PLL链段构象从无规线团向螺旋构象的转变.  相似文献   

15.
合成一种分子量分布窄、两嵌段侧链不同的新型聚(γ-苄基-L-谷氨酸)和聚(γ-十二烷基-L-谷氨酸)的二嵌段聚肽(poly(γ-benzyl-L-glutamate)-b-poly(γ-dodecyl-L-glutamate),PBLG-b-PDLG),并研究该嵌段聚肽的分子结构、热性能及液晶性.PBLG-b-PDLG的合成是利用N-羧酸内酸酐(N-carbonyl anhydride,NCA)法,以正己胺为引发剂,在0℃的条件下的氯仿溶液中,先将γ-苄基-L-谷氨酸NCA开环聚合获得了末端带胺基的活性PBLG-NH2沉淀后,再以其为引发剂加入γ-十二烷基-L-谷氨酸的NCA继续反应.氢核磁共振波谱(1H-NMR)和凝胶渗透色谱(GPC)用于表征两嵌段的摩尔比、分子量及其分布,发现嵌段聚肽的分子量分布只有1.07~1.09.由红外光谱(IR)的分析得知PBLG-b-PDLG的二次结构为刚直棒状的α-螺旋结构.利用示差扫描量热分析法(DSC)考察材料的热性质,发现不同组成的PBLG-b-PDLG有不同的热行为,而在100℃附近都出现了微弱的热致相转变.采用偏光显微镜观察PBLG-b-PDLG磁场取向膜的相变行为中发现其相结构不同于一般无规共聚物所呈现的胆甾液晶结构,同时用在PBLG-b-PDLG的二氯乙烷溶致液晶溶液中观察到一般近晶相所呈现的扇形织构.  相似文献   

16.
通过对聚(γ-苄基L-谷氨酸酯)(PBLG)的亲水改性制备了两亲性聚(γ-苄基L-谷氨酸酯-co-羟乙谷酰胺)无规共聚肽(PBHG)用于静电纺丝制备超细纤维.通过傅里叶变换红外光谱、核磁共振氢谱表征了聚合物结构.通过测定溶液表面张力、黏度、电导率及扫描电镜观察纤维形貌考察了不同溶剂及PBHG浓度对纺丝溶液性质及电纺纤维的影响.通过水浸实验及MTT法评价了电纺纤维膜的亲水性及细胞相容性.研究发现在三氯甲烷(TCM)和四氢呋喃(THF)中PBHG采取α-螺旋构象,刚性分子链自取向排列,可获得直径为微米或亚微米的电纺纤维.以TCM为溶剂时,因溶液表面张力大、导电率低导致纤维品质较差,而以THF为溶剂可获得表面光洁、尺寸均匀的电纺纤维.当溶剂为三氟乙酸(TFA)时,PBHG采取无规线团构象,柔性分子链彼此缠结,同时溶液表面张力小、黏度低、电导率高,可获得纳米电纺纤维.但因TFA挥发性相对较差,易造成纤维粘连.将TFA与TCM复配后作为溶剂可改善纤维粘连问题.与PBLG电纺纤维相比,改性后的PBHG电纺纤维的亲水性得到了改善,可在水中保持纤维骨架而无需交联,并表现出良好的细胞相容性,能促进细胞在电纺纤维膜上的增殖.  相似文献   

17.
PBLG-PEG-PBLG嵌段共聚物的合成及其CHO细胞毒性;聚谷氨酸苄酯;聚乙二醇;嵌段共聚物;细胞毒性  相似文献   

18.
用端氨基聚乳酸做引发剂,在DMF中引发Nε-苄氧羰基-L-赖氨酸酐(Lys(Z)-NCA)聚合,合成了端氨基聚(Nε-苄氧羰基-L-赖氨酸)-b-聚乳酸两嵌段共聚物.以端羧基聚乙二醇经NHS活化与端氨基聚(Nε-苄氧羰基-L-赖氨酸)-b-聚乳酸偶联,合成了聚(乳酸-b-Nε-苄氧羰基-L-赖氨酸-b-乙二醇)三嵌段聚合物.利用IR、1H-NMR、GPC和TEM对它们的结构、形态进行了表征,结果表明,所合成的分子量可控、分子量分布窄(Mw/Mn=1.07)的嵌段共聚物,酰化反应产率达70%以上.同时聚乙二醇和Nε-苄氧羰基-L-赖氨酸被引入到聚乳酸主链中,在聚合物侧链脱保护后有望改善聚乳酸的细胞亲和性。  相似文献   

19.
多响应性聚肽共混胶束的药物控释性能   总被引:2,自引:0,他引:2  
合成了聚(L-谷氨酸)-b-聚氧化丙烯-b-聚(L-谷氨酸)(PLGA-b-PPO-b-PLGA)三嵌段聚肽共聚物.通过透射电镜、激光光散射与核磁共振等方法研究了其与聚乙二醇-6-聚氧化丙烯(PEG-b-PPO)两嵌段共聚物共混体系的自组装行为,使用紫外分光光度计探讨了负载阿霉素的共混聚集体在不同环境下的释药行为.结果表明:该体系形成了以PPO为内核,PLGA和PEG为壳的共混胶束,该共混胶束的释药行为不仅具有pH和温度的响应性,并且对共混胶束的组分具有依赖性.  相似文献   

20.
通过胱胺三甲基硅氮烷(N-TMS)引发N-羧基内酸苷(NCA)开环聚合,合成了2种两亲刚性三嵌段聚多肽聚(L-赖氨酸-ε-端甲基二缩乙二醇酰胺)-b-聚(L-谷氨酸-γ-苄酯)-b-聚(L-赖氨酸-ε-端甲基二缩乙二醇酰胺)(P[Lys-(EG)_2]-b-PBLG-b-P[Lys-(EG)_2])和聚(L-谷氨酸-γ-苄酯)-b-聚(L-赖氨酸-端甲基二缩乙二醇酰胺)-b-聚(L-谷氨酸-γ-苄酯)(PBLG-b-P[Lys-(EG)_2]-bPBLG),并用其在N,N-二甲基甲酰胺(DMF)-水的混合溶液中制备了三嵌段聚多肽的自组装体。采用核磁共振氢谱(1 H-NMR)和凝胶渗透色谱(GPC)表征了三嵌段聚多肽的结构,通过透射电子显微镜(TEM)研究了三嵌段聚多肽在混合溶液中的自组装行为。结果表明:通过N-TMS引发NCA开环聚合得到的三嵌段聚多肽的分子量与其理论值基本一致,且分子量分布窄;聚多肽在DMF-水的混合溶液中分别形成了球状胶束、大复合胶束、棒状大复合胶束等组装体;其自组装行为与特殊的全刚性嵌段结构有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号