首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient species of gallic acid(GA)have been studied by 266 nm nanosecond laser flash photolysis inaqueous solution and acetonitrile.The intermediate with absorption at 320 nm was identified as excited triplet state(~3GA~*),the decay rates of which were obtained in aqueous solution and acetonitrile respectively.Energy transferfrom ~3GA~* to β-carotene was observed and the energy transfer rate constant k_(ent)was determined to be 2.2×10~9mol~(-1)·L·s~(-1).GA underwent photoionization during photolysis and the quantum yield of photoionization was de-termined to be 0.12 at room temperature with KI as a reference.  相似文献   

2.
The photochemical reaction between 1,2‐naphthoquinone (NQ ) and adenine was investigated using nanosecond time‐resolved laser flash photolysis. With photolysis at 355 nm, the lowest triplet state T1 of NQ was produced via intersystem crossing from its singlet excited state. The triplet‐triplet absorption of the state contributes three bands of transient spectra at 374, 596 and 650 nm, respectively, in pure acetonitrile and binary water‐acetonitrile solutions. In the presence of adenine, the observation of + (at 363 nm) and radical (at 343 and 485 nm) indicates a multistep mechanism of electron transfer process followed by a proton transfer between 3NQ * and adenine. By fitting with the Stern‐Volmer relationship, the quenching rate constant k q of 3NQ * by adenine in binary water‐acetonitrile solutions (4/1, volume ratio, v/v) is determined as 1.66 × 109 m −1 s−1. Additionally, no spectral evidence confirms the existence of electron transfer between 3NQ * with thymine, cytosine and uracil.  相似文献   

3.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

4.
Nanosecond flash photolysis of 1,4-dinitronaphthalene (1,4-DNO2N) in aerated and deaerated solvents shows a transient species with absorption maximum at 545 nm. The maximum of the transient absorption is independent of solvent polarity and its lifetime seems to be a function of the hydrogen donor efficiency of the solvent. The transient absorption is attributed to the lowest excited triplet state of 1,4-DNO2N. The reactivity of this state for hydrogen abstraction from tributyl tin hydride (Bu3SnH), Kq = 3.8 × 108M?1 sec, is almost equal to that of nitrobezene triplet state which has been characterized as an n → π* state. Based on spectroscopic and kinetic evidence obtained in the present work, the triplet state of 1,4-DNO2N behaves as an n → π* state in nonpolar solvents, while in polar solvents the state is predominantly n → π* with a small amount of intramolecular charge transfer character.  相似文献   

5.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Photoreduction of 7H‐benzo[e]perimidin‐7‐one (3‐AOIA, A1) and its 2‐methyl derivative (2‐Me‐3‐AOIA, A2) by non‐H‐donating amines (1,4‐diazabicyclo[2.2.2]octane [DABCO]; 2,2,6,6‐tetramethylpiperidine [TMP]), and a hydrogen‐donating amine (triethylamine [TEA]), has been studied in deaerated neat acetonitrile solutions using laser flash photolysis (LFP) and steady‐state photolysis. The triplet excited states of A1 and A2 were characterized by a strong absorption band with λmax = 440 nm and lifetimes of 20 and 27 μs respectively. In the presence of tertiary amines, both triplet excited states were quenched with rate constants close to the diffusional limit (kq ranged between 109 and 1010 M?1 s?1). The transient absorption spectra observed after quenching with DABCO and TMP were characterized by maxima located at 460 nm and broad shoulders in the range of 500–600 nm. These transient species are attributed to solvent‐separated radical ion pairs and/or to isolated radical anions. In the presence of TEA, these transients undergo proton transfer, leading to the neutral hydrogenated radicals, protonated over the N1‐ and O‐atoms. Transient absorption spectra of these transients were characterized by maxima located at 400 and 520 nm and 430 nm respectively. Additional support for these spectral assignments was provided by pulse radiolysis (PR) experiments in acetonitrile and 2‐propanol solutions.  相似文献   

7.
The photochemistry of two isostructural metal–organic frameworks based on 5‐amino/5‐formamidoisophthalate (CAU‐10‐NH2/NHCHO) or mixed‐linker 5‐amino/5‐formamido‐ and 5‐nitroisophthalate (CAU‐10‐NO2/NH2/NHCHO) has been studied using laser flash photolysis. 355 nm excitation of CAU‐10‐NH2/NHCHO leads to a transient absorption spectrum characterized by a broad continuous absorption from 380 to 800 nm that was attributed to the presence of holes (440 nm) and electrons (600 nm) based on iPrOH and N2O quenching, respectively. In contrast, no transients were observed for the isostructural mixed‐linker CAU‐10‐NO2/NH2/NHCHO, data that is compatible with the uniform distribution of linkers 5‐amino/5‐formamido/5‐nitroisophthalate as charge‐transfer complex pairs. The same effect of quenching of 5‐aminoisophthalate transients by 5‐nitroisophthalate was also observed in aqueous solution (pH 9) but with much lower strength. Using a simple Stern–Volmer formalism allowed the estimation of the interaction of 5‐aminoisophthalate with 5‐nitroisophthalate in MOF to be 5.2×104 times stronger than in the aqueous phase.  相似文献   

8.
The photochemistry of N‐hydroxypyridine‐2(1H)‐thione (NHPT), inserted as a photolabile modifier at the 6‐position of 2′‐deoxyguanosine or guanosine, has been evaluated. In particular, 6‐[(1‐oxidopyridin‐2‐yl)sulfanyl]‐ ( 1a ) and 6‐[(pyridin‐2‐yl)sulfanyl]‐2′,6‐dideoxyguanosine ( 2a ), novel photolabile derivatives of the natural nucleosides, were synthesized and characterized. The observed photolysis products of 1a in organic solvents could only be rationalized by assuming a rapid equilibrium with the corresponding 6‐[(2‐thioxopyridin‐1(2H)‐yl)oxy] analogue 3a (Scheme 5). Transient spectroscopy of 1a indicated a strong triplet‐excited state suitable for triplet → triplet energy transfer or singlet‐oxygen generation. The NHPT function was stable enough for (slightly modified) automated solid‐phase oligonucleotide synthesis. The utility of the above compounds is discussed, as well as their potential use in photosensitization of reactive oxygen species in DNA.  相似文献   

9.
《Chemphyschem》2004,5(1):47-56
As a powerful natural antioxidant, lipoic acid (LipSS) and its reduced form dihydrolipoic acid (DHLA) exert significant antioxidant activities in vivo and in vitro by deactivation of reactive oxygen and nitrogen species (ROS and RNS). In this study the riboflavin (RF, vitamin B2) sensitized UVA and visible‐light irradiation of LipSS and DHLA was studied employing continuous irradiation, fluorescence spectroscopy, and laser flash photolysis (LFP). Our results indicate that LipSS and DHLA quench both the singlet state (1RF*) and the triplet state (3RF*) of RF by electron transfer to produce the riboflavin semiquinone radical (RFH.) and the radical cation of LipSS and DHLA, respectively. The radical cation of DHLA is rapidly deprotonated twice to yield a reducing species; the radical anion of LipSS (LipSS.?). When D2O was used as solvent, it was confirmed that the reaction of LipSS with 3RF* consists of a simple electron‐transfer step, while loss of hydrogen occurs in the case of DHLA oxidation. Due to the strong absorption of RFH. and the riboflavin ground state, the absorption of the radical cation and the radical anion of LipSS can not be observed directly by LFP. N,N,N′,N′‐tetramethyl‐p‐phenylenediamine (TMPD) and N,N,N′,N′‐tetramethyl benzidine (TMB) were added as probes to the system. In the case of LipSS, the addition resulted in the formation of the radical cation of TMPD or TMB by quenching of the LipSS radical cation. If DHLA is the reducing substrate, no formation of probe radical cation is observed. This confirms that LipSS.+ is produced by riboflavin photosensitization, and that there is no oxidizing species produced after DHLA oxidization.  相似文献   

10.
He‐Rng Zeng 《中国化学》2002,20(12):1546-1551
The photoinduced electron‐transfer reaction of N, N, N', N'‐tetra‐(p‐methylphenyl)‐4,4'‐diamino‐1,1'‐diphenyl ether (TPDAE) and fullerenes (C60/C70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C60/C70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60/C70) in benzonitrile have been evaluated by observing the transient absorption bands in the near‐IR region where the excited triplet state, radical anion of fullerenes (C60/C70) and radical cations of TPDAE are expected to appear.  相似文献   

11.
Nanosecond laser photolytic studies of 4-nitro-N,N-dimethylnaphthylamine (4-NDMNA) in nonpolar and polar solvents at room temperature show a transient species with an absorption maximum in the 500-510-nm range. This species is assigned to the lowest triplet excited state of 4-NDMNA. The absorption maximum of this state is independent of solvent polarity, and its lifetime is a function of the hydrogen donor efficiency of the solvent. In n-hexane the lifetime 1/k of the triplet state is 9.1 × 10?6 sec, while in acetonitrile 1/k is 2.0 × 10?7 sec. The hydrogen abstraction rate constant kH of the triplet state with tributyl tin hydride (Bu3SnH) in n-hexane is 1.7 × 107M?1·sec?1, while in the case of isopropyl alcohol as hydrogen donor, kH is 4.0 × 107M?1·sec?1. The activation energy for the hydrogen abstraction by the triplet state from Bu3SnH in deaerated n-hexane is 0.6 kcal/mol. The lack of spectral shift with increasing solvent polarity, and the appreciable hydrogen abstraction reactivity of the triplet state, also independent of solvent polarity, seem to indicate that this excited state is an n-π* state which retains its n-π* character even in polar media.  相似文献   

12.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

13.
The photophysical properties of the fluoroquinolone antibiotic sarafloxacin (SFX) were investigated in aqueous media. SFX in water, at pH 7.4, shows intense absorption with peaks at 272, 322 and 335 nm, (? = 36800 and 17000 dm3 mol?1 cm?1, respectively). Both the absorption and emission properties of SFX are pH‐dependent; pKa values for the protonation equilibria of both the ground (5.8 and 9.1) and excited singlet states (5.7 and 9.0) of SFX were determined spectroscopically. SFX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Laser flash photolysis and pulse radiolysis studies have been carried out in order to characterize the transient species of SFX in aqueous solution. Triplet–triplet absorption has a maximum at 610 nm with a molar absorption coefficient of 17,000 ± 1000 dm3 mol?1 cm?1. The quantum yield of triplet formation has been determined to be 0.35 ± 0.05. In the presence of oxygen, the triplet reacts to form excited singlet oxygen with quantum yield of 0.10. The initial triplet (3A*) was found to react with phosphate buffer to form triplet 3B* with lower energy and longer lifetime and having an absorption band centered at 700 nm. SFX triplet was also found to oxidize tryptophan to its radical with concomitant formation of the anion radical of SFX. Hence the photosensitivity of SFX could be initiated by the oxygen radicals and/or by SFX radicals acting as haptens.  相似文献   

14.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   

15.
The photochemistry of 2,6‐dimethyl‐4‐chlorophenol ( 6 ) has been studied in methanol and trifluoroethanol (TFE) through product studies and transient absorption spectroscopy. Chloride loss from triplet 6 gave triplet hydroxyphenyl cation 14 , which equilibrated with triplet oxocyclohexadienylydene 15 within a few tens of nanoseconds; the cation can, however, be selectively trapped by allyltrimethylsilane (kad = 108–109 m ?1 s?1) to give a phenonium ion and the allylated phenol. In neat alcohols, 14 and 15 are reduced through different mechanisms, namely by hydrogen transfer through radical cation 17 and via phenoxyl radical 16 , respectively. The mechanistic rationalization has been substantiated by the parallel study of an Osilylated derivative. The work shows that the chemistry of the highly (but selectively) reactive phenyl cation 14 can not only be discriminated from that of the likewise highly reactive carbene 15 , but also exploited for synthetically useful reactions, as in this case with alkenes. Photolysis of electron‐donating substituted halobenzenes may be the method of choice for the mild generation of some classes of phenyl cations.  相似文献   

16.
The laser photochemistry and photosensitization of DNA bases were carried out by using a nanosecond kinetic spectroscopy. A novel triplet state of thymine and its OH adduct were observed in N_2 and N_2O saturated aqueous solution respectively. The transient absorption spectra of triplet cytosine, cytidine and deoxycytidine monophosphoric acid were observed for the first time. Triplet guanosine was confirmed and its pK, value, 8.7, was obtained. Kinetic studies of the growth-decay of the above transient species were performed and their reaction mechanisms were elucidated in detail.  相似文献   

17.
Triplet‐triplet extinction coefficients for astaxanthin ( I ) and canthaxanthin ( II ) in different deaerated polarity solutions of MeCN and benzene were evaluated by laser flash photolysis at 298 K in the spectral region from 350 to 650 nm by energy transfer method, employing 2‐acetonaphthone as sensitizer. The triplet‐triplet extinction coefficients in MeCN and benzene were different in terms of the carotenoid present. The maximum triplet‐triplet extinction coefficient was 0.1–1.7×105 L·mol−1·cm−1 in different solvents. The rate constants of triplet decay were I : 1.25×1010 L·mol−1·s−1, II : 1.12×1010 L·mol−1·s−1 in MeCN; and I : 1.75×1010 L·mol−1·cm−1, II : 3.27×1010 L·mol−1·s−1 in benzene. The bimolecular rate constants of energy transfer from triplet excited 2‐acetonaphthone to carotenoids were determined from the linear regression of the decay rate constant of 2‐acetonaphthone triplet at varying carotenoid concentrations. The triplet lifetimes of 3AST* and 3CAN* in different solvents were also determined. The results indicated that triplet energy transfer was nearly diffusion‐controlled.  相似文献   

18.
The photochemical processes of aromatic amino acids were investigated in aqueous solution using acetone as photosensitizer by KrF (248 nm) laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments. The intermediates recorded were assigned to the excited triplet state of tryptophan, the radicals of tryptophan and tyrosine. The excited triplet state of tryptophan produced via a triplet-triplet excitation transfer and the radicals arising from electron transfer reaction has been identified. Neither electron transfer nor energy transfer between triplet acetone and phenylalanine can occur in photolysis of phenylalanine aqueous solution which contains acetone. Furthermore, triplet acetone-induced radical transformation: Trp/N-Tyr→Trp-Tyr/O was observed directly in photolysis of dipeptide (Trp-Tyr) aqueous solution containing acetone, and the transformation resulting from intramolecular electron transfer was suggested.  相似文献   

19.
A series of directly mesomeso‐linked Pd–porphyrin oligomers (PdDTP‐M, PdDTP‐D, and PdDTP‐T) have been prepared. The absorption region and the light‐harvesting ability of the Pd–porphyrin oligomers are broadened and enhanced by increasing the number of Pd–porphyrin units. Triplet–triplet annihilation upconversion (TTA‐UC) systems were constructed by utilizing the Pd–porphyrin oligomers as the sensitizer and 9,10‐diphenylanthracene (DPA) as the acceptor in deaerated toluene and green‐to‐blue photon upconversion was observed upon excitation with a 532 nm laser. The triplet–triplet annihilation upconversion quantum efficiencies were found to be 6.2 %, 10.5 %, and 1.6 % for the [PdDTP‐M]/DPA, [PdDTP‐D]/DPA, and [PdDTP‐T]/DPA systems, respectively, under an excitation power density of 500 mW cm?2. The photophysical processes of the TTA‐UC systems have been investigated in detail. The higher triplet–triplet annihilation upconversion quantum efficiency observed in the [PdDTP‐D]/DPA system can be rationalized by the enhanced light‐harvesting ability of PdDTP‐D at 532 nm. Under the same experimental conditions, the [PdDTP‐D]/DPA system produces more 3DPA* than the other two TTA‐UC systems, benefiting the triplet–triplet annihilation process. This work provides a useful way to develop efficient TTA‐UC systems with broad spectral response by using Pd–porphyrin oligomers as sensitizers.  相似文献   

20.
A combined femtosecond transient absorption (fs‐TA) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreaction of 2‐benzoylpyridine (2‐BPy) in acetonitrile and neutral, basic and acidic aqueous solvents is reported. fs‐TA results showed that the nπ* triplet 2‐BPy is the precursor of the photocyclisation reaction in neutral and basic aqueous solvents. The cis triplet biradical and the cis singlet zwitterionic species produced during the photocyclisation reaction were initially characterised by ns‐TR3 spectroscopy. In addition, a new species was uniquely observed in basic aqueous solvent after the decay of the cis singlet zwitterionic species and this new species was tentatively assigned to the photocyclised radical anion. The ground‐state conformation of 2‐BPy in acidic aqueous solvent is the pyridine nitrogen‐protonated 2‐BPy cation (2‐BPy‐NH+) rather than the neutral form of 2‐BPy. After laser photolysis, the singlet excited state (S1) of 2‐BPy‐NH+ is generated and evolves through excited‐state proton transfer (ESPT) and efficient intersystem crossing (ISC) processes to the triplet exited state (T1) of the carbonyl oxygen‐protonated 2‐BPy cation (2‐BPy‐OH+) and then photocyclises with the lone pair of the nitrogen atom in the heterocyclic ring. Cyclisation reactions take place both in neutral/basic and acidic aqueous solvents, but the photocyclisation mechanisms in these different aqueous solvents are very different. This is likely due to the different conformation of the precursor and the influence of hydrogen‐bonding of the solvent on the reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号