首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
针对生物酶在固相载体负载后存在的催化活性与稳定性之间“此消彼长”的问题, 本工作采用“自牺牲模板”策略以铝基金属有机骨架材料(Al-MOF)为前驱体设计制备多级孔Al2O3 (MHAl2O3)材料, 再以“聚多巴胺(PDA)”仿生膜对材料表面进行功能化修饰后用以固载辣根过氧化物酶(HRP). 通过调节前驱体的煅烧温度来实现载体孔径大小的调控, 探讨了载体的孔道限域效应对固定化酶反应器催化活性的影响, 所得固定化酶反应器的热稳定性和重复使用性显著提高. 为了解析固定化酶反应器的构效关系, 采用酶动力学和热动力学参数研究了固定化酶反应器催化过程中酶与底物的相互作用, 结果表明固载后酶分子对底物的亲和性和专一性得到提升. 将固定化酶反应器用于模拟废水中苯胺黑药的催化降解时, 表现出非常高效的催化效率.  相似文献   

2.
对固定化酶的载体进行功能化修饰,通过改善载体和酶的界面连接可使酶分子在载体表面形成高度有序的二维排列,从而提高酶的催化活性和操作稳定性.用柠檬酸修饰的Fe3O4磁性纳米粒子(CA-Fe3O4)易于磁性分离且表面富含羧基,可作为一种优良载体通过吸附法固定化氯过氧化物酶(CPO)构筑CPO@CA-Fe3O4酶反应器、共固定化CPO和葡萄糖氧化酶(GOx)构筑GOx&CPO@CA-Fe3O4级联酶反应器.将酶反应器应用于催化氧化结晶紫染料的脱色时,两种酶反应器均显示出良好的催化活性、对底物的亲和性与专一性、热稳定性,在实际水样中也有良好的应用效果.与CPO@CA-Fe3O4相比, GOx&CPO@CA-Fe3O4酶反应器因级联反应中H2O2的原位产生而表现出更优异的催化性能...  相似文献   

3.
首先制备粒径均匀的具有开放的三维中心辐射树枝状结构的介孔二氧化硅(DSP)粒子, 再通过静电相互作用在孔道内负载氯过氧化物酶(CPO)构筑了CPO@DSP固定化酶反应器. 通过改变硅源正硅酸乙酯(TEOS)和模板剂十六烷基三甲基氯化铵(CTAC)的浓度调控孔径大小, 研究了孔径对固定化酶反应器催化活性的影响; 同时基于酶促反应动力学分析探讨了孔道内酶催化反应的限域效应, 并进一步在CPO@DSP表面包覆海藻酸钠(SA)水凝胶薄膜以抑制酶反应器在使用过程中酶分子的泄露, 所得SA-CPO@DSP固定化酶反应器的重复使用性显著提高, 循环使用10次后, 仍能保持90%以上的催化活性. 将SA-CPO@DSP酶反应器用于环境水体中残留抗生素左氧氟沙星的降解, 对100 μg/mL的底物在25 min内降解率可达88%以上; 将该反应器用于苯酚的视觉比色检测, 裸眼可检测到5 μmol/L的苯酚, 表明SA-CPO@DSP酶反应器在环境保护方面具有良好的应用前景.  相似文献   

4.
琼脂固定化过氧化氢酶的催化活性   总被引:1,自引:0,他引:1  
采用琼脂包埋法对过氧化氢酶进行固定化,考察了固定化过氧化氢酶催化过氧化氢降解的活性,确定了最佳催化反应条件.结果表明,经琼脂包埋法固定化后,过氧化氢酶仍保留较高的催化活性,其催化过氧化氢分解反应的最佳条件为温度35℃、pH 9.0.与此同时,固定化过氧化氢酶具有更强的温度适应能力和更宽的pH作用范围,并具有一定的重复使用性能.  相似文献   

5.
以间苯三酚-甲醛为碳源前驱体, 嵌段聚合物F127 (PEO106PPO70PEO106)为模板剂, 在水相中快速合成了介孔碳材料. 将其应用于辣根过氧化物酶的固定化, 并初步研究了固定化对酶稳定性的影响. 利用TEM和SEM观察该材料的微观结构, 通过N2吸附-脱附技术对介孔碳材料的孔结构和孔容等进行了表征. 结果表明, 介孔碳材料具有蠕虫状介孔结构, 孔径可在5.6~7.6 nm之间调变, 相应的比表面积介于691.1~787.8 m2/g, 且随着反应体系中盐酸浓度的增加, 所得材料的孔径、比表面积和孔容等均呈现减小的趋势. 固定在介孔碳中的辣根过氧化物酶, 保持了其蛋白质二级结构, 且与游离酶相比, 固定化酶的热稳定性、pH稳定性和操作稳定性都有明显的提高. 经多次循环操作, 固定化酶依然保持较高的活性, 说明其具有良好的可重复利用价值.  相似文献   

6.
通过采用邻苯二甲酸酐(PA)对辣根过氧化物酶(HRP)的蛋白链进行修饰, 研究了PA化学修饰对HRP的稳定性、催化活性、活性中心结构、酶对底物的亲合性和专一性等催化性质的影响. 结果显示: 酸性条件下(pH=3), 4小时后PA-HRP的催化活性比天然HRP提高了7.5%;碱性条件下(pH=10), 4小时后PA-HRP的催化活性比天然HRP提高了27%. PA-HRP的K_m值为8.16 (mmol/L), 小于天然HRP的K_m值12.99 (mmol/L), 而PA-HRP的k_(cat)/K_m值为7.86(10~4(L/ mmol· min)大于天然HRP的k_(cat)/K_m的6.70(10~4(L/ mmol· min). 这些催化活性和动力学数据表明了PA-HRP与天然HRP相比其稳定性、酶对底物的亲和性和专一性得到了提高. 紫外-可见光谱、拉曼光谱数据显示: 修饰剂PA 改变了天然HRP血红素周围的微环境, 对酶蛋白分子的活性中心结构并没有影响. 差示光谱显示PA修饰剂可以提高酶对底物的亲和力.  相似文献   

7.
以铁氨基黏土(FeAC)为载体, 通过共价交联固定葡萄糖氧化酶(GOx), 构筑了铁氨基黏土-葡萄糖氧化酶纳米复合催化剂(FeAC-GOx). 利用FeAC的过氧化物酶活性, 与GOx结合进行级联反应, 可催化葡萄糖转化为过氧化氢并产生显色反应; 采用扫描电子显微镜(SEM)、 X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对FeAC-GOx进行了形貌和结构表征, 并评价了其酶动力学参数、 催化稳定性和重复使用性等. 结果表明, GOx的固定化率可达到76.4%, 所构筑的纳米结构酶复合体系具有高效的级联催化能力. 与天然酶体系相比, FeAC-GOx具有更优异的温度和pH耐受性, 且在重复使用6次后, 酶催化活性无明显降低. 该体系不仅为新型葡萄糖传感器的开发奠定了基础, 还为多酶级联纳米结构酶的构筑提供了新思路.  相似文献   

8.
介孔材料的修饰及固定青霉素酰化酶的稳定性研究   总被引:4,自引:0,他引:4  
利用扩孔剂的作用合成出较大孔径(12 nm)的介孔材料SBA-15, 并进行表面氨基修饰, 以此为载体, 以戊二醛为交联剂, 对青霉素酰化酶进行组装固定, 并对固定化青霉素酰化酶(PGA)的稳定性进行了深入的研究. 实验结果表明, PGA与载体交联后仍保持活性. 热稳定性研究结果表明, 制备的固定化青霉素酰化酶在低于60 ℃时保持稳定; pH在6~11范围内保持稳定; 固定化酶重复使用10次之后, 仍具有高达90%的残留活力.  相似文献   

9.
漆酶在纳米多孔金上的固定化及其酶学性质研究   总被引:1,自引:0,他引:1  
利用纳米材料为载体对酶等生物大分子进行固定化近年来引起人们的浓厚兴趣. 以Au/Ag合金为原料, 通过控制浓硝酸的腐蚀时间再辅以退火处理得到了不同孔径的纳米多孔金(NPG), 利用扫描电镜(SEM)和N2气体吸附仪对孔性质进行了表征. 以NPG为载体, 用α-硫辛酸和N-乙基-N’-(3-二甲基氨基丙基)碳酰二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)对金表面进行活化, 通过化学共价偶联的方法对产自Trametes versicolor的漆酶进行了固定化. 比较了孔径大小对酶固定化量及比活力的影响. 发现小孔径更有利于对该漆酶的固定化. 与游离酶相比, 固定化酶的最适pH没有改变, 但最适温度却从原来的40 ℃升到了60 ℃. 固定化后, 漆酶的pH和热稳定性都明显提高了. 重复使用8次仍能保持初始活力的65%, 且在4 ℃下保存1个月几乎观察不到酶活力的下降. 此外, 失活的固定化酶经浓硝酸处理后, NPG载体可重复利用. 本结果初步显示出了NPG在生物技术领域中的应用潜力.  相似文献   

10.
郭华  张蕾  董旭  申刚义  尹俊发 《化学进展》2020,32(4):392-405
多酶级联反应在生命活动过程中发挥着重要作用。固定化多酶级联反应器是将不同功能的酶通过物理化学或生物手段固定于特定载体上,以之模拟生物体内多种酶协同作用方式促使底物发生降解和转化等反应的新型仿生催化技术。该技术具有固定化酶的稳定性、可重复利用以及酶级联的高效协同催化等优点,近年来在生物传感、模拟生物学以及生物转化等领域得到越来越多的关注。本文从多酶级联反应原理、反应器制备、级联反应的影响因素及应用等方面对近年来固定化多酶级联反应器的进展进行详细评述,并展望其发展前景。  相似文献   

11.
Laccase was immobilized on mesostructured cellular foam (MCF), a kind of mesoporous silica with large pore size by adsorption–cross linking method. The effects of immobilization time, temperature, pH, amount of enzyme and content of glutaraldehyde on the immobilization were optimized. The activities and stabilities towards pH and temperature of the immobilized enzyme were studied, and significantly improved enzymatic properties and good operational stability were obtained for the immobilized laccase. Dye decolorization tests showed that the immobilized enzyme could decolorize Alizarin Red and Indigo Blue solution fast and efficiently in the presence of ABTS.  相似文献   

12.
不同介孔材料固定青霉素酰化酶的稳定性研究   总被引:9,自引:0,他引:9  
介孔材料由于具有在2~30nm之间可调的纳米级规则孔道、大比表面积和强吸附性能而成为固定化酶的优良载体.将酶固定于介孔材料的孔道中制备成的固定化酶与溶液酶相比,有易于与产物分离,并可回收和反复使用,可降低生产成本,减少酶的自水解和保持酶的活性.青霉素酰化酶(Penicillin acylase,PGA,EC.3.5.1.11)又称为青霉素酰胺酶或青霉素氨基水解酶,该酶属于球蛋白,分子量较大,由2个亚基组成:分子量为19500的含有侧链结合位点的亚基和分子量为60000的含有催化位点的亚基.  相似文献   

13.

Enzymes are gradually increasingly preferred over chemical processes, but commercial enzyme applications remain limited due to their low stability and low product recovery, so the application of an immobilization technique is required for repeated use. The aims of this work were to produce stable enzyme complexes of cross-linked xylanase on magnetic chitosan, to describe some characteristics of these complexes, and to evaluate the thermal stability of the immobilized enzyme and its reusability. A xylanase was cross-linked to magnetite particles prepared by in situ co-precipitation of iron salts in a chitosan template. The effect of temperature, pH, kinetic parameters, and reusability on free and immobilized xylanase was evaluated. Magnetization, morphology, size, structural change, and thermal behavior of immobilized enzyme were described. 1.0?±?0.1 μg of xylanase was immobilized per milligram of superparamagnetic chitosan nanoparticles via covalent bonds formed with genipin. Immobilized xylanase showed thermal, pH, and catalytic velocity improvement compared to the free enzyme and can be reused three times. Heterogeneous aggregates of 254 nm were obtained after enzyme immobilization. The immobilization protocol used in this work was successful in retaining enzyme thermal stability and could be important in using natural compounds such as Fe3O4@Chitosan@Xylanase in the harsh temperature condition of relevant industries.

  相似文献   

14.
Glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase isan enzyme that converts GL-7-ACA to 7-aminocephalosporanic acid, a starting material for semisynthetic cephalosporin antibiotics. In this study, optimal conditions for the immobilization of GL-7-ACA acylase were determined by experimental observations and statistical methods. The optimal conditions were as follows: 1.1 M phosphate buffer (pH 8.3) as buffer solution, immobilization temperature of 20°C, and immobilization time of 120 min. Unreacted aldehydegroups were quenched by reaction with a low-molecular-weight material such as l-lysine, glycine, and ethanolamine after immobilization in order to enhance the activity of immobilized GL-7-ACA acylase. The activities of immobilized GL-7-ACA acylase obtained by using the low-molecular-weight materials were higher than those obtained by immobilized GL-7-ACA acylase not treated with low-molecular-weight materials. In particular, the highest activity of immobilized GL-7-ACA acylase was obtained using 0.4% (v/v) ethanolamine. We also investigated the effect of sodium cyanoborohydride in order to increase the stability of the linkage between the enzyme and the support. The effect on operational stability was obvious: the activity of immobilized GL-7-ACA acylase treated with 4% (w/w) sodium cyanoborohydride remained almost 100% after 20 times of reuse.  相似文献   

15.
Fusarium solani pisi recombinant cutinase, immobilized by entrapment in calcium alginate and by covalent binding on porous silica, was used to catalyze the hydrolysis of tricaprylin. The influence of relevant parameters on the catalytic activity such as pH, temperature, and the substrate concentration were studied. Cutinase immobilized by entrapment presented a Michaelis-Menten kinetics for tricaprylin concentrations up to 200 mM. At higher concentrations of substrate, inhibition was observed. For covalent binding immobilization, diffusional limitations were observed at low substrate concentrations and substrate inhibition occurred for concentrations higher than 150 mM. The stability of immobilized cutinase was also evaluated. The enzyme immobilized by entrapment showed a high stability, in contrast to the immobilization on porous silica.  相似文献   

16.
Pig pancreas carboxypeptidase B has been immobilized by covalent attachment to a polyacrylamide-type bead support possessing carboxylic functional groups activated by water-soluble carbodiimide. The optimum conditions of immobilization were determined. The activation of the support and the coupling reaction were performed in 0.1 M sodium citrate/sodium phosphate buffer (pH 4.5) using a support-carbodiimide-enzyme weight ratio 4:8:1 at 0-4 degrees C. Under such conditions, the highest activity achieved was 6700 U/g solid. The catalytic properties and stability of immobilized carboxypeptidase B were studied and compared with the corresponding properties of the soluble enzyme. The specific activity of the immobilized enzyme calculated on bound protein basis was about 70% of that of soluble enzyme. The optimum pH for the catalytic activity of the immobilized carboxypeptidase B was practically identical with that of soluble enzyme (pH 7.6-7.7). The apparent optimum temperature of the immobilized carboxypeptidase B was about 7 degrees C higher than that of the soluble enzyme. With hippuryl-L-arginine as substrate, Kmapp value of the immobilized enzyme was tenfold higher than the Km value of the soluble enzyme. The conformational stability of the enzyme was markedly enhanced by the strongly hydrophylic microenvironment in a wide temperature and pH range. The immobilized carboxypeptidase B was used for stepwise digestion of cytochrome C.  相似文献   

17.
New concept on the promotion of immobilization and catalytic activity of enzyme on mesoporous silica through template micelles is proposed and realized in this paper. Proper P123 templates are controllable retained in the as-synthesized SBA-15, not only to anchor the horseradish peroxidase (HRP) guest, but also to establish the crowding-like microenvironment around the enzyme. The influence of retaining templates on the pore structure of SBA-15, immobilization, and catalytic activity of HRP is studied, and the possible process of template removal is proposed. Ethanol refluxing of 6 h is conformable to prepare the optimal mesoporous support characterized with the retained templates of about 8%. With the assistance of retained templates in SBA-15, up to 49 mg g(-1) of HRP can be immobilized, 100% more than that on calcined SBA-15. Furthermore, the thermal stability, the resistance of pH variation and denaturing agent urea, and the recycle usage of HRP immobilized are obviously elevated, paving a novel and low-cost route to develop enzyme catalysts.  相似文献   

18.
Synthesized macroporous cross-linked copolymers of methyl acrylate-divinyl benzene (MA-DVB), acrylamide-N,N'-methylenebisacrylamide (AAM-BIS) and their functionalized products were used for immobilization of aminoacylase from Aspergillus oryzae. Effects of the carrier properties on the activity of immobilized aminoacylase were investigated and effects of substrate concentration, pH, phosphate buffer concentration and temperature on the immobilized aminoacylase were compared with those of the soluble aminoacylase. A column of immobilized aminoaoylase was prepared and used for continuous resolution of N-acyl-DL-methionine; the operational stability of immobilized enzyme was also investigated.  相似文献   

19.
Tyrosinase is used to eliminate phenolic compounds from wastewater. Therefore, its immobilization is important to enhance catalytic efficiency. Papery materials are of particular interest for use as support for enzyme immobilization since the porous microstructure of fiber networks in papers can provide a suitable reaction environment, especially in flow-type catalytic reactions. However, immobilization of protein onto papery structure needs chemical modifications in severe conditions. To overcome this challenge, a cellulosic paper was directly amine-functionalized in moderate conditions and used for tyrosinase immobilization. The support was pretreated with HCl (0.5 N) solution and then sequentially immersed in ethylenediamine (EDA), glutaraldehyde solution (2% v/v) and the crude enzyme. In comparison with the untreated one, the immobilized enzyme on the EDA-treated support offered a 3.7-fold increase in activity. The FTIR spectra as well as EDX analysis proved the presence of amine groups in the cellulosic paper and also covalent immobilization of tyrosinase on the modified support. When considering the effect of pH on the activity at 25 °C, a maximum relative activity of 134% at pH 6 was revealed. Similarly, evaluating the effect of temperature on the activity at pH 7 displayed a maximum relative activity of 152% at 35 °C. The immobilized enzyme was suitable for use for more than four cycles to degrade a phenolic compound at severe pH and temperature conditions. Additionally, the immobilized enzyme was active after treatment of the surface at different pHs and temperatures for 105 min. The chemically modified cellulosic paper can be used as a support for enzyme immobilization.  相似文献   

20.
An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号