首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
光声光谱是70年代中兴起的一种光谱新技术,与一般的吸收光谱比较,光声谱是一种能谱,即使在弱吸收的情况下,很小的吸收能也能被光声谱仪的微音器所检测,所以近年来已应用于物理、化学、生物学、医学、材料科学及环境检测等领域。我们对稀土氧化物的光声谱进行了较细致的研究,得到许多光声谱数据。  相似文献   

2.
乙型肝炎表面抗原的激光光声酶联免疫测定刘风华,邓延倬,曾云鹗(武汉大学化学系,武汉大学分析测试科学系,武汉,430072)关键词激光光声谱,酶联免疫吸附分析,聚偏二氟乙烯,乙型肝炎表面抗原激光光声谱是微量和痕量分析的一种新技术,可检测10-6~10-...  相似文献   

3.
以PCN-6(Cu_(3)TATB_(2))为母体材料,Co、Fe、Mn、Zn和Ni为第2种金属,将蒸气辅助法应用于双金属有机框架材料(MOFs)的合成中,并成功制备出PCN-6(M)(M=Co/Fe/Mn/Zn/Ni)系列双金属材料,采用粉末X射线衍射仪(PXRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、电感耦合等离子发射光谱仪(ICP-OES)和气体吸附等技术手段对合成的材料进行了结构、形貌、组成和性能的表征,结果表明制备的PCN-6(M)系列双金属材料的PXRD衍射峰和形貌与母体材料PCN-6一致,交换的金属在材料中分布均匀,交换量(质量分数)分别为Co:12.1%,Fe:22.0%,Mn:16.1%,Zn:17.5%,Ni:16.8%,远高于相同条件下溶剂热法的金属交换量(5%左右),在气体吸附性能方面,PCN-6(Zn)、PCN-6(Ni)和PCN-6(Co)这3种双金属材料对CH_(4)和CO_(2)的吸附能力优于母体材料,理想吸附溶液理论(IAST)计算表明,PCN-6(Fe)对CO_(2)/CH_(4)的吸附选择性优于母体材料。通过蒸气辅助法制备双金属MOFs材料,可以提高金属的交换量并改变MOFs材料对不同气体分子的亲合力,进而提高材料对气体的吸附性能和选择性。蒸气辅助法为双金属MOFs材料的制备提供了新的思路,且有望用应于其它材料的制备中。  相似文献   

4.
以[Ni(CN)4]2-为构筑基元,与过渡金属离子Mn2+通过溶液缓慢扩散法合成出二维Hofmann类氰基桥联配位聚合物Mn(H2O)2[Ni(CN)4]·4H2O(1),并解析了其晶体结构.配位聚合物1属正交晶系,空间群Cmcm,晶胞参数a=0.73080(5)nm,b=1.21372(8)nm,c=1.40875(9)nm,α=β=γ=90°,Ni和Mn中心通过氰桥交互连接构成二维波浪形层状结构.通过混合法得到系列Hofmann类配位聚合物M(H2O)2[Ni(CN)4]·xH2O(M=Mn,Fe,Co,Ni,Cd)的粉末样品,粉末XRD结果表明,系列配位聚合物具有与1相同的晶体结构;变温粉末XRD和热重分析结果表明,系列配位聚合物具有较高的热稳定性.以Mn(H2O)2[Ni(CN)4]·xH2O的脱水样品为构筑模块与柱状配体pyrazine组装构筑的三维多孔配位聚合物具有一定的储气性能.  相似文献   

5.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

6.
采用硫化助熔剂法制备了CaS∶Eu, Mn荧光粉.通过测量样品的荧光光谱和紫外光辐照下的光激励发光谱, 发现Mn离子的掺入使CaS:Eu的发光性能明显增强, 存在于基质材料中的陷阱分布因掺入Mn杂质而改变, 形成了新的俘获中心, 引起能量转移. 增大了电子俘获过程中电子和空穴复合的几率, 有利于提高材料的存储性能. 比较了不同浓度下发射光谱的差异, 探讨了掺杂浓度对发光特性的影响. 通过比较光激励发光衰减曲线, 进一步表明了Mn掺杂对CaS∶Eu光激励发光性能的改善.  相似文献   

7.
利用水相合成法,以Zn(Ac)2、NaBH4、Na2SeO3、Na2S、Mn(Ac)2为原料,N-乙酰-L-半胱氨酸为稳定剂,合成了Mn2+掺杂的ZnSe∶Mn量子点。研究了稳定剂与量子点(Zn2+)配比、Mn2+离子掺杂浓度、老化温度以及老化时间对ZnSe∶Mn量子点发光性能的影响,并对所得量子点固体粉末进行了XRD与IR表征与分析。结果表明该方法是一种简便、快捷且环境友好的合成方法。  相似文献   

8.
王珊  张粟  李晓东  刘爽  李成宇 《化学通报》2022,85(12):1466-1474
采用高温固相法制备了Mn4+单掺及Mn4+ - Zr4+共掺杂ScTaO4发光材料。利用X射线粉末衍射(XRD)、扫描电镜(SEM)、电子顺磁共振(EPR)以及光致发光光谱(PL)等手段研究了样品的结构、形貌、锰离子价态以及光致发光性质等。详细研究了掺杂Mn离子的价态、Mn离子发光的浓度猝灭和温度猝灭机理。研究发现Mn掺杂的ScTaO4荧光粉在655 nm处有较强的深红色发光,该发射来自Mn4+的2Eg → 4A2g跃迁。当Sc1-xTaO4: xMn4+中Mn4+离子掺杂浓度x为0.005,此时发光强度最大。Mn4+、Zr4+共掺不仅能有效提高Mn4+的发光强度而且可以减小其温度猝灭效应。Zr4+共掺杂造成的发光特性改变,为新型Mn4+掺杂荧光粉的设计和发光性能的调节提供了有价值的参考。  相似文献   

9.
采用量子化学从头算密度泛函理论(DFT)计算方法,对不同金属元素掺杂的M/g-C_3N_4(M=Mn,Cu,Au)构型进行优化,分析比较这些结构的能隙大小、金属原子的结合能以及前线轨道.结果表明:M/g-C_3N_4(M=Mn,Cu,Au)的稳定性顺序为Mn/g-C_3N_4Cu/g-C_3N_4Au/g-C_3N_4;掺杂几种金属原子后M/g-C_3N_4(M=Mn,Cu,Au)的能隙明显减小,极大的增强了g-C_3N_4在可见光范围吸收能力,提高了g-C_3N_4的光催化效率.本研究对进一步理解结构修饰对g-C_3N_4光催化性能的影响提供了一定的理论支持.  相似文献   

10.
含锰的过渡金属配合物以其独特的分子结构 ,在功能材料方面显示出潜在的应用价值 [1~ 4 ] .此外 ,锰在许多生物体系中扮演着重要活性反应中心的角色 .例如在光合作用光系统 ( PS )中水氧化中心( WOC)的锰簇合物、含锰过氧化氢酶 ( Mn Catalase)、含锰超氧化物歧化酶 ( Mn SOD  相似文献   

11.
林和成a  b 杨勇  a 《化学学报》2009,67(2):104-108
通过共沉淀与固相反应法制备层状的LiNi0.45Mn0.45Co0.10O2, 并利用X射线衍射(XRD)和电子扫描显微镜(SEM)测定材料的结构和形貌. 在2.5~4.5 V范围内, 以0.1 C (28 mA•g-1)放电, LiNi0.45Mn0.45Co0.10O2正极材料的起始放电容量达到167.2 mAh•g-1, 但循环性能较差. 当采用AlF3包覆后, 材料的循环性能得到明显改善. 利用电化学阻抗谱(EIS)技术探索AlF3包覆对正极材料的电化学性能改善机理, 实验结果表明: AlF3包覆层能够阻止电解液对正极材料的溶解和侵蚀, 稳定其层状结构, 同时降低了电极界面阻抗. 因此AlF3包覆技术是一种改善LiNi0.45Mn0.45Co0.10O2材料电化学性能的有效方法和工具.  相似文献   

12.
采用水相法合成ZnO花-棒(ZFRs)有序阵列结构,同时利用离子交换法,制备Ag和Ag2Se量子点共敏化光ZnO光阳极(AA-ZFRs)。通过扫描电子显微镜(SEM)、X射线粉末衍射(XRD)、X射线能量色散谱(EDS)和透射电子显微镜(TEM)等手段对样品进行了分析和表征,并测试其光电化学特性以及量子效应。结果表明,Ag-Ag2Se共敏化ZnO花-棒三维有序结构对太阳光的吸收范围延展至近红外区(750 nm),并且在敏化层与ZnO基质界面形成异质结,有效的抑制光生电子-空穴对复合,增强光转换量子效应,从而提高光电化学性能,开路电压达到-0.77 V,短路电流为0.64 mA。  相似文献   

13.
LiNi(1/3)Mn(1/3)Co(1/3)O2具有很高的理论比容量,但是三元正极材料在高电压下长循环时,其表面结构发生较大的衰退,导致电池的循环性能和倍率性能变差。本文采用耐高电压且结构稳定的富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2可以有效改善材料的电化学性能。通过XRD、SEM、XPS和TEM等手段对包覆后的材料进行分析,证实了在LiNi(1/3)Mn(1/3)Co(1/3)O2的表面形成了10nm厚的均匀Li4Mn5O(12)的包覆层;在循环100圈后,包覆后的LiNi(1/3)Mn(1/3)Co(1/3)O2仍具有179.5m Ah/g的放电比容量和88.6%容量保持率,明显高于未包覆的LiNi(1/3)Mn(1/3)Co(1/3)O2的78.3%容量保持率。因此,利用富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2为实现更高能量密度的锂离子电池提供了新的途径。  相似文献   

14.
采用固相法合成了钛离子掺杂LiFe0.6Mn0.4PO4/C正极材料.通过X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试,对合成材料的结构、形貌和电化学性能进行了表征.结果表明:钛离子掺杂未影响材料的晶型结构,但显著改善了材料的电化学性能;Li(Fe0.6Mn0.4)0.96Ti0.02PO4/C材料表现出优异的倍率性能,0.1C倍率下其比容量为160.3mAh.g-1;在10C倍率下,比容量为134.7mAh.g-1;特别是在20C高倍率下仍然具有124.4mAh.g-1的放电比容量.电化学交流阻抗谱(EIS)和循环伏安(CV)测试结果说明,通过钛离子掺杂导致材料阻抗和极化的减少是材料倍率性能改善的主要原因.  相似文献   

15.
锂离子电池正极材料LiV3-xMnxO8的水热合成与性能   总被引:1,自引:0,他引:1  
采用水热法制备了Mn掺杂改性的锂二次电池钒基层状正极材料LiV3-xMnxO8(x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10). 用X射线衍射(XRD)和扫描电镜(SEM)对材料的晶体结构和形貌进行表征, 并以50 mA·g-1的电流对材料进行恒流充放电测试. 研究了Mn掺杂对材料晶体结构和电化学性能的影响. 结果表明, Mn掺杂能够明显改善材料的电化学性能. 在掺杂改性的LiV3-xMnxO8材料中, LiV2.94Mn0.06O8的初始容量最高, 达到295 mAh·g-1. 当掺杂量控制在0.01≤x≤0.08范围内时, LiV3-xMnxO8材料均具有较好的循环性能和充放电可逆性, 经20次循环后放电比容量都保持在120 mAh·g-1以上, 40次循环后都保持在100 mAh·g-1以上, 且材料的充放电效率始终维持在93%以上.  相似文献   

16.
陈鹏  董帆  冉茂希  李佳芮 《催化学报》2018,39(4):619-629
许多研究表明, MnOx和g-C3N4均有催化氧化NO的活性, 并且探索了它们各自的转化机理. 然而, MnOx/g-C3N4复合材料的光热催化机理仍然是一个未解决的问题. 我们通过室温沉淀法直接合成不同摩尔比的MnOx/g-C3N4, 并发现其表现出良好的光热协同催化氧化NO的性能. MnOx/g-C3N4催化剂在g-C3N4表面含有不同价态的MnOx. 通过原位红外光谱在60 ℃下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnOx/g-C3N4光热协同催化NO的机理. 结果表明, 光照对MnOx热催化NO的过程几乎没有影响, 但对MnOx/g-C3N4光热协同催化NO产生积极作用并且形成重要的催化循环机制. 具体过程是光生电子(e-)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+), 且低价Mn离子易给出电子(e-)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+), 使活性氧空位再生. 通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O-)可将中间产物(NOH和N2O2-)氧化为终产物(NO2-和NO3-). 这将为开发更好的净化NOx的催化剂提供重要的指导意义. XRD表征结果表明, MnOx/g-C3N4复合催化剂的结晶度较低. TEM和XPS表征结果表明, g-C3N4表面含有多种低结晶度的MnOx, 主要含有MnO, MnO2和Mn2O3. 此外, 通过对比MnOx和1:5 MnOx/g-C3N4催化净化NO的XPS结果, 发现反应后的MnOx含有大量Mn-Nitrate且Mn3+和Mn4+大幅度减少; 同时, 反应前后1:5 MnOx/g-C3N4的Mn2+, Mn3+和Mn4+的含量变化微弱. BET-BJH测试结果显示, MnOx/g-C3N4复合催化剂的比表面积和孔容均高于纯g-C3N4. UV-Vis DRS测试结果显示, MnOx/g-C3N4复合催化剂显示了良好的可见光吸收能力. 紫外-可见光催化去除NO的测试结果表明, 1:5 MnOx/g-C3N4(44%)的光催化活性明显高于MnOx(28%)和g-C3N4(36%). ESR测试结果表明, 参与反应的主要活性物种为·O2-自由基. EPR测试结果表明, 1:5 MnOx/g-C3N4的氧空位明显多于MnOx, 丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n = 2, 3和4)的变价而诱导O2分子形成活性氧(O-). 以上结果清晰地表明1:5 MnOx/g-C3N4表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明, 光照前后MnOx催化氧化NO的过程没有明显的变化, 表明其属于典型的热催化过程, 综合上述表征结果发现MnOx的氧缺陷是Mnn+(n = 3和4)变价的活性位点, 可诱导O2产生活性氧催化氧化NO为硝酸盐吸附在MnOx上; 光照前后1:5 MnOx/g-C3N4催化氧化NO的过程有明显不同, 光照前主要表现为g-C3N4表面MnOx的热催化过程, 而光照后1:5 MnOx/g-C3N4为光热协同催化NO的过程. 具体过程是g-C3N4的光生电子(e-)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+), 且低价Mn离子易给出电子(e-)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+)使活性氧空位再生. 通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O-)可将中间产物(NOH和N2O2-)氧化为终产物(NO2-和NO3-).  相似文献   

17.
以Li2CO3为Mn源,采用醇水混合溶剂分散与中温固相反应法考察了Mn(NO3)2@6H2O,Mn(MeCO2)2@4H2O,MnCO3,化学MnO2(CMD)和电解MnO2(EMD)等不同Mn前驱物对制备Li1+xMn2-xO4尖晶石正极材料的电化学性能的影响,并采用XRD,BET,TEM等手段对材料进行了表征.结果表明,由不同Mn前驱物制备的正极材料均呈尖晶石结构,其容量大小和循环性能(依Mn源为顺序)为EMD>Mn(NO3)2@6H2O>MnCO3>Mn(MeCO)2@4H2O>CMD.材料呈立方晶体,比表面积(依Mn源为顺序)为CMD>MnCO3>Mn(NO3)2@6H2OMn(MeCO2)2@4H2O>EMD,正好与容量及稳定性顺序相反.采用本文的制备方法时,EMD和Mn(NO3)2@6H2O都是较好的Mn前驱物,Mn(MeCO2)2@4H2O和MnCO3也可以做Mn源,但焙烧时需要富氧气氛,CMD不适宜作Mn前驱物.  相似文献   

18.
采用缓冲溶液法制备复合掺杂Mn、Mg的正极材料Ni0.82Mn0.18-xMgx(OH)2(x=0.06、0.09、0.12)。采用XRD、XPS和SEM等测试表征材料的晶体结构、锰价态和形貌,采用循环伏安和恒流充放电测试研究Mn、Mg不同掺杂比例对氢氧化镍电化学性能的影响。结果表明,Mn、Mg掺杂样品均为β相,晶粒细化;Ni0.82Mn0.09Mg0.09(OH)2样品具有优异的电极反应可逆性和充放电性能,100 mA·g^-1电流密度下的放电比容量(290.6 mAh·g^-1)优于商用β-Ni(OH)2(281.1 mAh·g^-1);且500 mA·g^-1电流密度下循环30圈后,Ni0.82Mn0.09Mg0.09(OH)2的放电比容量未见衰减,其循环稳定性优于商用β-Ni(OH)2。  相似文献   

19.
以β-Ni0.9Co0.05Mn0.025Mg0.025(OH)2和LiOH.H2O为原料通过高温固相法合成了球形LiNi0.9Co0.05Mn0.025Mg0.025O2。采用热重-差热分析了反应过程,采用X射线衍射和扫描电镜对粉末的结构和形貌进行了表征。采用充放电测试和循环伏安测试对材料电化学性能进行了研究。结果表明:750℃煅烧12 h合成的LiNi0.9Co0.05Mn0.025Mg0.025O2为Li原子混排较少的良好层状结构,二次颗粒尺寸在15μm左右,且具有最高的放电比容量和良好的循环性能,在0.2C,2.8~4.3 V的条件下,首次放电比容量达207 mAh.g-1,40次循环后容量保持率为92.5%。  相似文献   

20.
对半导体材料进行表面化学修饰或改性,是提高其光催化活性、有效利用光能的一种重要措施.本文结合水热化学法、化学池沉积和后续热处理等,分别制备了未修饰α-Fe2O3和钒修饰的α-Fe2O3光电极材料.利用X射线粉末衍射(XRD)谱和紫外-可见漫反射光谱(UV-Vis-DRS)技术分析表征了材料的晶相结构、化学组成和光谱吸收等固体物理化学性能;利用光电流测量和电化学交流阻抗谱(EIS)实验技术,并基于1 mol·L-1NaOH (pH 13.6)中的光电化学水分解反应,研究了钒修饰对α-Fe2O3材料光电化学性能的增强作用.结果表明,与未修饰的Fe2O3材料相比,钒修饰α-Fe2O3样品出现FeVO4的XRD特征峰,但临界光吸收波长未发生红移;钒修饰使Fe2O3材料的光电流增大4-5倍、光生载流子在电极表面的复合几率降低了3/4-4/5、电极表面电荷传递速率(表观一级速率常数)明显提高.结合Fe2O3/溶液界面半导体能带模型和有关研究结果,分析了研究体系的界面电荷动力学传输过程以及钒修饰使α-Fe2O3材料光电化学性能增强的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号