首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   2篇
化学   3篇
物理学   1篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
许多研究表明,MnO_x和g-C_3N_4均有催化氧化NO的活性,并且探索了它们各自的转化机理.然而,MnO_x/g-C_3N_4复合材料的光热催化机理仍然是一个未解决的问题.我们通过室温沉淀法直接合成不同摩尔比的MnO_x/g-C_3N_4,并发现其表现出良好的光热协同催化氧化NO的性能.MnO_x/g-C_3N_4催化剂在g-C_3N_4表面含有不同价态的MnOx.通过原位红外光谱在60°C下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnO_x/g-C_3N_4光热协同催化NO的机理.结果表明,光照对MnOx热催化NO的过程几乎没有影响,但对MnO_x/g-C_3N_4光热协同催化NO产生积极作用并且形成重要的催化循环机制.具体过程是光生电子(e~–)转移到MnO_x上参与光热协同的还原循环(Mn~(4+)→Mn~(3+)→Mn~(2+)),且低价Mn离子易给出电子(e~–)与光生空穴(h~+)相结合而诱导逆向的循环(Mn~(2+)→Mn~(3+)→Mn~(4+)),使活性氧空位再生.通过MnO_x(Mn~(4+)/Mn~(3+)/Mn~(2+))变价而产生的活性氧(O~–)可将中间产物(NOH和N_2O_2~–)氧化为终产物(NO_2~–和NO_3~–).这将为开发更好的净化NO_x的催化剂提供重要的指导意义.XRD表征结果表明,MnO_x/g-C_3N_4复合催化剂的结晶度较低.TEM和XPS表征结果表明,g-C_3N_4表面含有多种低结晶度的MnO_x,主要含有MnO,MnO_2和Mn_2O_3.此外,通过对比MnO_x和1:5 MnO_x/g-C_3N_4催化净化NO的XPS结果,发现反应后的MnO_x含有大量Mn-Nitrate且Mn~(3+)和Mn~(4+)大幅度减少;同时,反应前后1:5 MnO_x/g-C_3N_4的Mn~(2+),Mn~(3+)和Mn~(4+)的含量变化微弱.BET-BJH测试结果显示,MnO_x/g-C_3N_4复合催化剂的比表面积和孔容均高于纯g-C3N4.UV-Vis DRS测试结果显示,MnO_x/g-C_3N_4复合催化剂显示了良好的可见光吸收能力.紫外-可见光催化去除NO的测试结果表明,1:5 MnO_x/g-C_3N_4(44%)的光催化活性明显高于MnO_x(28%)和g-C_3N_4(36%).ESR测试结果表明,参与反应的主要活性物种为?O_2~–自由基.EPR测试结果表明,1:5 MnO_x/g-C_3N_4的氧空位明显多于MnO_x,丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n=2,3和4)的变价而诱导O2分子形成活性氧(O–).以上结果清晰地表明1:5 MnO_x/g-C_3N_4表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明,光照前后MnOx催化氧化NO的过程没有明显的变化,表明其属于典型的热催化过程,综合上述表征结果发现MnOx的氧缺陷是Mnn+(n=3和4)变价的活性位点,可诱导O_2产生活性氧催化氧化NO为硝酸盐吸附在MnO_x上;光照前后1:5 MnO_x/g-C_3N_4催化氧化NO的过程有明显不同,光照前主要表现为g-C_3N_4表面MnO_x的热催化过程,而光照后1:5 MnO_x/g-C_3N_4为光热协同催化NO的过程.具体过程是g-C_3N_4的光生电子(e~–)转移到MnO_x上参与光热协同的还原循环(Mn~(4+)→Mn~(3+)→Mn~(2+)),且低价Mn离子易给出电子(e~–)与光生空穴(h~+)相结合而诱导逆向的循环(Mn~(2+)→Mn~(3+)→Mn~(4+))使活性氧空位再生.通过MnOx(Mn~(4+)/Mn~(3+)/Mn~(2+))变价而产生的活性氧(O~–)可将中间产物(NOH和N_2O_2~–)氧化为终产物(NO_2~–和NO_3~–).  相似文献   
2.
李佳芮  洪缨 《声学学报》2020,45(1):131-136
提出了一种改进的基于肺音信号的声谱图熵特征分析的客观喘鸣音检测方法。喘鸣音的功率明显高于正常肺音,因此喘鸣音声谱图的功率分布沿频率轴方向具有明显的聚集特性,该特性可以通过熵值反映。本算法首先对肺音信号进行时频变换得到时频幅度谱信号,然后去除基本呼吸音,进而计算其熵特性曲线并提取熵特性曲线的相应特征.最后,通过支持向量机(support vector machine,SVM)训练分类器,实现了喘鸣音的有效检测。该方法通过预处理使熵特性曲线的特征差异更加明显,且通过SVM分类器进行检测,解决了原方法检测存在检测模糊区域的问题。实验结果表明,该算法在两组测试集的检测准确率分别为97.1%和95.7%,检测率较高,具有良好的应用前景。   相似文献   
3.
陈鹏  董帆  冉茂希  李佳芮 《催化学报》2018,39(4):619-629
许多研究表明, MnOx和g-C3N4均有催化氧化NO的活性, 并且探索了它们各自的转化机理. 然而, MnOx/g-C3N4复合材料的光热催化机理仍然是一个未解决的问题. 我们通过室温沉淀法直接合成不同摩尔比的MnOx/g-C3N4, 并发现其表现出良好的光热协同催化氧化NO的性能. MnOx/g-C3N4催化剂在g-C3N4表面含有不同价态的MnOx. 通过原位红外光谱在60 ℃下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnOx/g-C3N4光热协同催化NO的机理. 结果表明, 光照对MnOx热催化NO的过程几乎没有影响, 但对MnOx/g-C3N4光热协同催化NO产生积极作用并且形成重要的催化循环机制. 具体过程是光生电子(e-)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+), 且低价Mn离子易给出电子(e-)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+), 使活性氧空位再生. 通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O-)可将中间产物(NOH和N2O2-)氧化为终产物(NO2-和NO3-). 这将为开发更好的净化NOx的催化剂提供重要的指导意义. XRD表征结果表明, MnOx/g-C3N4复合催化剂的结晶度较低. TEM和XPS表征结果表明, g-C3N4表面含有多种低结晶度的MnOx, 主要含有MnO, MnO2和Mn2O3. 此外, 通过对比MnOx和1:5 MnOx/g-C3N4催化净化NO的XPS结果, 发现反应后的MnOx含有大量Mn-Nitrate且Mn3+和Mn4+大幅度减少; 同时, 反应前后1:5 MnOx/g-C3N4的Mn2+, Mn3+和Mn4+的含量变化微弱. BET-BJH测试结果显示, MnOx/g-C3N4复合催化剂的比表面积和孔容均高于纯g-C3N4. UV-Vis DRS测试结果显示, MnOx/g-C3N4复合催化剂显示了良好的可见光吸收能力. 紫外-可见光催化去除NO的测试结果表明, 1:5 MnOx/g-C3N4(44%)的光催化活性明显高于MnOx(28%)和g-C3N4(36%). ESR测试结果表明, 参与反应的主要活性物种为·O2-自由基. EPR测试结果表明, 1:5 MnOx/g-C3N4的氧空位明显多于MnOx, 丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n = 2, 3和4)的变价而诱导O2分子形成活性氧(O-). 以上结果清晰地表明1:5 MnOx/g-C3N4表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明, 光照前后MnOx催化氧化NO的过程没有明显的变化, 表明其属于典型的热催化过程, 综合上述表征结果发现MnOx的氧缺陷是Mnn+(n = 3和4)变价的活性位点, 可诱导O2产生活性氧催化氧化NO为硝酸盐吸附在MnOx上; 光照前后1:5 MnOx/g-C3N4催化氧化NO的过程有明显不同, 光照前主要表现为g-C3N4表面MnOx的热催化过程, 而光照后1:5 MnOx/g-C3N4为光热协同催化NO的过程. 具体过程是g-C3N4的光生电子(e-)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+), 且低价Mn离子易给出电子(e-)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+)使活性氧空位再生. 通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O-)可将中间产物(NOH和N2O2-)氧化为终产物(NO2-和NO3-).  相似文献   
4.
按需施用沼肥,可提升我国粮食产能,筑牢大国粮仓。鉴于国内外利用近红外模型对沼液中氮、磷、钾含量快速检测的研究未见报道,本文对183个沼液样本用偏最小二乘回归(PLSR)法建立快速预测模型。结果显示,模型对沼液中的总氮、总钾和氨氮含量,校正决定系数(RC2)分别为0.9238、0.9339和0.9191,预测决定系数(RP2)分别为0.9255、0.9184和0.9160,均大于0.9。校正集残留预测偏差RPDC分别为3.8044、4.0034和3.6724,预测集残留预测偏差RPDP分别为3.7035、3.5403和3.4876,均大于3。这说明模型定标效果好、稳定性好、预测精度高,能够用于实际检测;总磷含量的RC2为0.9047,大于0.9,RP2为0.8083,RPDC为3.2538,大于3,RPDP为2.3100。模型可...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号