首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
方熠 《广州化学》2013,(4):31-35
通过原位电化学还原直接制备石墨烯修饰玻碳电极,并用电化学阻抗谱(EIS)和扫描电子显微镜(SEM)对其进行了表征,研究了亚硝酸根离子(NO2-)在石墨烯修饰玻碳电极上的电化学行为.结果表明:石墨烯修饰玻碳电极对NO2-的氧化反应有良好的电催化活性,NO2-的浓度与峰电流呈良好的线性关系,且在pH 7.0的磷酸盐缓冲液(PBS)中其氧化峰电流最高.利用该方法测定了模拟废水中NO2的含量,结果令人满意.  相似文献   

2.
制备了纳米ZrO2,采用XRD和原子力显微镜技术加以表征。构建了十六烷基三甲基溴化铵-纳米ZrO2修饰电极。用循环伏安法和示差脉冲伏安法研究了亚硝酸根(NO2-)在该修饰上的电化学行为,结果表明,该修饰电极对NO2-的氧化具有良好的电催化能力,示差脉冲伏安信号与其浓度在6×10-7~1.6×10-4mol/L范围内呈现良好的线性关系,检出限为1.3×10-7mol/L(S/N=3)。此外,方法已用于NO2-样品的测定。  相似文献   

3.
本研究先采用滴涂法制备了多壁碳纳米管修饰电极,然后采用电化学沉积技术从含有氧化石墨烯的溶液中制备了石墨烯(GR)/多壁碳纳米管(MWCNT)复合膜修饰电极(GR/MWCNT/GCE)。研究了亚硝酸根(NO2-)在该修饰电极上的电化学行为。结果表明,该修饰电极对亚硝酸根的电氧化具有高的催化活性。在pH 7.00的PBS缓冲溶液中,微分脉冲伏安法测定亚硝酸根的线性范围为1.0×10-7mol·L-1~1.7×10-3mol·L-1,检出限为5.0×10-8mol·L-1(S/N=3)。用该法测定了土壤中亚硝酸根的含量,结果令人满意。  相似文献   

4.
于浩  郑笑晨  刘冉彤  金君  简选 《应用化学》2014,31(11):1336-1344
采用循环伏安法制备了多壁碳纳米管负载铁氰化铜-铁修饰复合陶瓷碳电极(CuFeHCF/MWCNT/CCE),研究了该修饰电极的电化学性质及对NO-2的电催化活性。 结果表明,该修饰电极对NO-2的电氧化具有强的催化活性,安培法检测NO-2的线性范围为2.0×10-7~1.4×10-3 mol/L,灵敏度为104.1 μA/(mmol·L-1),检出限(3sb)为5.0×10-8 mol/L。 利用该方法测定了土壤中NO-2的含量,结果令人满意。  相似文献   

5.
潘壮英  马荣娜  李静  刘燕  赵倩  王国涛  王怀生 《化学学报》2009,67(23):2721-2726
利用溴代十六烷基三甲基铵(CTAB)为模板, 合成制备了棒状羟基磷灰石颗粒, 并以SEM, XRD, IR等手段进行了表征. 用制备的羟基磷灰石与自制的离子液体([BMIM]PF6)充分混合涂覆在玻碳电极表面制备了羟基磷灰石/离子液体修饰电极, 研究了镉离子在该修饰电极上的富集和电化学行为. 结果发现, 羟基磷灰石对镉离子有较好的富集作用, 而离子液体则可以在开路条件下使镉离子还原为金属镉, 氧化扫描时可以得到镉的灵敏氧化溶出峰, 以此为基础建立了一种高选择性地测定痕量镉离子的新方法, 该方法可以较好地避免铅、汞、银等重金属离子的干扰, 对镉离子检出限可达2.0×10-8 mol•L-1, 在4.0×10-8~2.2×10-7 mol•L-1的浓度范围内, 氧化溶出峰电流与Cd(II)的浓度呈良好的线性关系. 该研究有望在环境检测和环境治理方面发挥重要作用.  相似文献   

6.
采用电聚合方法制备三聚氰胺(MA)膜修饰玻碳电极(GCE),然后采用原位恒电位沉积法制备金纳米颗粒(Au),并将其修饰于膜电极表面,制得纳米金/三聚氰胺修饰玻碳电极(Au/MA/GCE)。用扫描电子显微镜(SEM)对修饰电极进行表面形貌和元素成分分析。用循环伏安法研究亚硝酸根(NO2-)在该修饰电极上的电化学行为发现,NO2-在0.85 V出现一灵敏的氧化峰。在优化的实验条件下,NO2-在1.0×10-5~1.0×10-3mol/L浓度范围内与其氧化峰电流成线性关系,检测下限为8.9×10-7mol/L。将修饰电极用于实际样品中NO2-的检测,效果良好。  相似文献   

7.
用1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)疏水性离子液体修饰玻碳电极,在0.2 mol/L磷酸盐缓冲溶液(pH为4.0~8.0)中,运用循环伏安法(CV)和差示脉冲溶出伏安法(DPSV)研究了木犀草素在修饰电极上的电化学行为,建立了测定木犀草素含量的新方法。 实验结果表明,该修饰电极上木犀草素氧化、还原峰电位均负移,峰电流增大。 在-0.2~0.7 V电位区间,pH=7.0的磷酸盐缓冲溶液体系中,木犀草素在修饰电极表面发生的是受吸附控制的准可逆等电子等质子电极反应,电子转移系数α=0.5,吸附量为4.6×10-10 mol/cm2;木犀草素氧化峰电流与其浓度在1.0×10-10~1.6×10-8 mol/L范围内呈良好的线性关系,检出限达到3.2×10-11 mol/L,回收率为98.7%~102.0%;该法操作简单、快速、灵敏、准确;可用于野菊花中类黄酮的测定。  相似文献   

8.
聚对氨基苯磺酸/石墨烯修饰玻碳电极伏安法测定痕量汞   总被引:1,自引:1,他引:0  
制备了对氨基苯磺酸/石墨烯复合膜修饰电极,研究了汞在修饰电极上的电化学行为。 在0.1 mol/L、pH=4.0的磷酸盐缓冲液中,以此修饰电极为工作电极,在-1.2 V搅拌富集5 min,用差分脉冲伏安法测定0.31 V处的溶出峰电流。 结果表明,该电极显著提高了汞离子的电化学响应信号。 在优化条件下,峰电流与Hg2+的浓度在1.0×10-6~5.0×10-4 mol/L范围内呈良好的线性关系,相关系数为0.995。 方法的检出限为5.0×10-7 mol/L。 将该法用于水样中痕量汞的测定,回收率为92.2%~105.2%。  相似文献   

9.
以类离子液体碳糊电极(CILE)为基体电极,采用滴涂法和利用静电吸附作用,制备了Hb/Fe3O4/CILE修饰电极,研究了Hb的直接电化学及其电催化行为,建立了H2O2的计时安培测定新方法。结果表明:Hb在该修饰电极上,Hb呈现了一对准可逆的氧化还原峰,且其在该修饰电极表面表观覆盖度为2.65×10-9moL/cm2;电子转移速率常数为1.35/s;表观米氏常数为1.59×10-5mol/L。在1.0×10-6~4.0×10-5mol/L范围内,催化电流与H2O2浓度呈线性关系(r=0.9976),检出限为3.0×10-7mol/L(S/N=3)。  相似文献   

10.
马心英  吴义芳  李霞 《应用化学》2012,29(7):824-829
利用滴涂的方法制备了石墨烯修饰电极;石墨烯修饰电极对对乙酰氨基酚(ACOP)的电化学氧化具有明显的催化作用。 研究了ACOP在石墨烯修饰电极上的电化学行为,建立了测定ACOP的电化学分析新方法。 考察了磷酸盐缓冲溶液的pH值对ACOP电化学行为的影响。 结果表明,氧化还原峰电位随pH值升高发生负移;在pH=6.0磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上呈现一对灵敏的氧化还原峰。 对乙酰氨基酚在石墨烯修饰电极上的氧化峰峰电流与其浓度在6.00×10-7~4.00×10-5 mol/L范围内呈良好的线性关系,相关系数为0.994 0;检出限为5.00×10-8 mol/L。 其回归方程为:ipa(A)=3.00c+1.21×10-5。 该修饰电极具有良好的灵敏度、选择性和稳定性,可用于对乙酰氨基酚药片分析。  相似文献   

11.
杂多酸因具有优异的结构使其能接受不同数目的电子,从而产生混价化合物,故其在电极修饰、电催化、功能材料及生物分析等领域的研究经久不衰。杂多酸主要通过共价、键合、吸附、聚合及溶胶-凝胶等手段修饰到电极表面上,但这种化学修饰电极的稳定性及选择性较差,检测的灵敏度较低,难以实际应用,纳米粒子具有高比表面和高活性,其催化活性和选择性呈特异行为,已被越来越多地用于修饰电极的制备。阳极氧化铝(AAO)在纳米材料中占有重要的地位,如它可作为模板合成纳米线或纳米管,也可作为生物传感器和反应器。  相似文献   

12.
苗新蕊  张旭红  谢英 《电化学》2007,13(2):203-206
研究血红蛋白在月桂酸修饰电极上的电化学行为,在0.02mol.L-1KH2PO4-Na2HPO4(pH=7)的缓冲液中,+0.6~-0.7V(vs.Ag/AgCl)电位范围内,Hb于该修饰电极产生不可逆还原电流峰.还原峰电流ip与v1/2呈线性关系,ip随溶液pH值和血红蛋白浓度的增加而增大,其浓度在1.00×10-8~5.00×10-9mol.L-1和1.92×10-6~2.06×10-7mol.L-1范围内分段呈线性变化关系.实验数据经进一步分析拟合,得到更精确的信息.该电极可作为检测血红蛋白的新型电化学生物传感器.  相似文献   

13.
采用循环伏安法研究了维生素B6在维生素B12修饰玻碳电极上的电化学行为,建立了测定痕量维生素B6的新方法.在pH 8.6的NH3-NH4Cl缓冲溶液中,维生素B6在修饰电极上产生一个灵敏的氧化峰,采用差分脉冲伏安法测定,其氧化峰电流与维生素B6的浓度在8.0×10-7~2.0×10-4 mol/L范围内呈良好的线性关系,检出限为2.0×10-7 mol/L.该修饰电极具有良好的选择性、灵敏度及稳定性,用于片剂中维生素B6的定量分析,结果令人满意.  相似文献   

14.
制备了Keggin型磷钨酸/2-氨基吡啶电聚合复合膜修饰电极,研究了该复合膜修饰电极的电化学性质。结果表明,在BR缓冲溶液中,该复合膜修饰电极显示出3对氧化还原峰,对应于表面电沉积的磷钨酸的电化学作用,其电化学行为受表面吸附控制。该电极对维生素B2(VB2)具有良好的电催化作用,根据VB2的电化学行为,推断出了可能的电极反应机理,计算出VB2在该电极上的电荷转移系数为0.357,电荷转移速率常数为0.042 s-1,推断其在该电极上的行为为准可逆过程。在2.4×10-6~1.0×10-4 mol/L和1.0×10-4~5.5×10-4 mol/L 范围内峰电流与VB2浓度呈良好的线性关系,其检出限为1.4×10-6 mol/L。该电极显示出良好的稳定性和重现性,用于复合维生素药片中VB2含量的测定,结果满意。  相似文献   

15.
过循环伏安制备了聚对羟基苯甲酸修饰的玻碳电极。考察了该电极对抗坏血酸的电催化性能。结果显示,聚对羟基苯甲酸修饰玻碳电极对抗坏血酸有很好的电催化作用。在修饰后的电极上产生的峰电流比修饰前的电极产生的峰电流大4倍,氧化峰电位负移189 mV。其氧化峰电流与抗坏血酸浓度在2.6×10-5~3.68 ×10-4mol/L范围内呈线性关系,相关性系数为0.9984,检测限为5×10-6 mol/L(S /N = 3)。在AA与UA共存的体系中,能排除多巴胺对抗坏血酸测定的干扰。  相似文献   

16.
利用流动态的原位傅里叶变换红外漫反射光谱(DRIFTS)对含硝酸铵气溶胶(以α-Fe2O3为主模拟气溶胶)与SO2的非均相反应进行了研究, 比较了硝酸铵与其它金属氧化物(CaO, MgO, α-Al2O3和SiO2)与SO2反应的情况.实验结果表明, 硝酸铵和α-Fe2O3混合颗粒物比硝酸铵和其它金属氧化物混合颗粒与SO2反应的吸附系数高, 表明α-Fe2O3比其它金属氧化物催化能力变强.利用BET面积作为反应活性表面积, 发现含有6%(质量分数)NH4NO3的α-Fe2O3混合颗粒物与SO2反应具有最高的比表面积吸附系数(γBET=2.42×10-9), 比纯氧化铁的反应高了近1.8倍.而纯NH4NO3颗粒与SO2不发生反应, 表明少量硝酸铵的存在在一定程度上提高了SO2在气溶胶颗粒物表面转化成硫酸盐的能力. 本文还讨论了含硝酸铵气溶胶与SO2的反应机制及其对大气环境的影响.  相似文献   

17.
赵永昕  李莉  王坤  陆天虹  杨小弟  李卉卉 《应用化学》2012,29(10):1206-1211
制备了石墨烯(CRG)-壳聚糖(CS)修饰玻碳(CRG-CS/GC)电极,用循环伏安法和示差脉冲伏安法研究了五氯酚(PCP)的电化学行为,发现其氧化电流信号与GC电极相比明显增强,表明修饰电极对PCP具有较强的吸附作用,并能够加速电子传递。 建立了一种灵敏简便、重现性好、稳定性好的测定PCP的新修饰电极方法,线性响应范围为1.00×10-7~1.00×10-5 mol/L(R=0.9975),检测限为2.3×10-8 mol/L(S/N=3)。 将该修饰电极应用于实际水样分析,回收率为97%~103%。  相似文献   

18.
The preparation and electrochemical properties of a glassy carbon (GC) electrode modified with cobaloxime complex were investigated. The complex of the type [CoIII(DO)(DOH)pn)Cl2] where (DO)(DOH)pn = N2,N2'-propanediylbis-2,3-butanedione-2-imine-3-oxime) was adsorbed irreversibly and strongly on the surface of preanodized glassy carbon electrode. Electrochemical behavior and stability of modified GC electrode were investigated by cyclic voltammetry. The electrocatalytic reduction of dioxygen has been studied using this modified glassy carbon electrode by cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as diagnostic techniques. The modified electrode showed excellent eletrocatalytic ability for the reduction of dioxygen to hydrogen peroxide in acetate buffer (pH 4.0) with overpotential 1.0 V lower than the plain glassy carbon electrode. The formal potential for this modified electrode is not shifted to more negative potentials by repeated reduction-oxidation cycles in oxygen-saturated supporting electrolyte solution. The apparent electron transfer rate constant (kS), the transfer coefficent (alpha) and the catalytic rate constant of O2 reduction at a GC modified electrode were determined by cyclic voltammetry and rotating disk electrode voltammetry and were found to be around 2.6 s(-1), 0.33 and 2.25 x 10(4) M(-1) s(-1). Based on the results, a catalytic mechanism is proposed and discussed.  相似文献   

19.
ZrO2-TiO2-CeO2的制备及其在NH3选择性催化还原NO中的应用   总被引:1,自引:0,他引:1  
林涛  李伟  龚茂初  喻瑶  杜波  陈耀强 《物理化学学报》2007,23(12):1851-1856
采用共沉淀法制备了载体材料TiO2、ZrO2-TiO2及ZrO2-TiO2-CeO2, 并利用X射线衍射(XRD)实验、比表面积测定(BET)、程序升温脱附(NH3-TPD)、储氧性能测定(OSC)及程序升温还原(H2-TPR)等方法对三种载体材料进行了表征. 结果表明, ZrO2-TiO2-CeO2具有较多的表面强酸位, 并具有一定的储氧性能和较强的氧化还原性能. 以三种材料为载体, 制备了质量分数分别为1%、9%的V2O5、WO3的整体式催化剂. 研究了三种催化剂在富氧条件下用NH3选择性催化还原NO的催化性能. 结果表明, 以ZrO2-TiO2-CeO2为载体的催化剂在反应空速为10000 h-1, 275 ℃时, NO的转化率接近100%, 具有最好的催化活性,并有良好的应用前景。  相似文献   

20.
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E 0' ) of Hb was –0.105 V versus SCE, the electron transfer rate constant was 4.66 s –1 . E 0′ of Hb at the modified electrode was linearly varied in a pH range of 5.0—8.0 with a slope of –49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an ex-cellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H 2 O 2 concentration in a range of 1.0×10 ?6 to 2.2×10 ?3 mol/L. The detection limit was 2.0×10 ?7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(K ma pp ) was 2.95 mmol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号