首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

2.
非螯合型手性双膦/钌催化的不对称氢化反应   总被引:1,自引:0,他引:1  
对RuCl3和手性双膦(2S,5S)-2,5-双-(二苯膦)-1,4∶3,6-双脱水-2,5-双去氧-L-艾杜醇(BDPI)催化的不对称氢化反应进行了研究,反应的转化率为100%,光学收率受[双膦]/[RuCl3]比值的影响较大.在α-乙酰胺基肉桂酸的催化氢化反应中,[双膦]/[RuCl3]=2.0时e.e.值最大,为68%;对衣糠酸的催化氢化,[双膦]/[RuCl3]=3时e.e.值最大,为92%.  相似文献   

3.
Reaction of (μ3-CCH3)CO3(CO)9 (I) with dppm (dppm = bis-(diphenylphosphino)methane) affords the cluster (μ3-CCH3)Co3(CO)7-dppm (II). The crystal and molecular structure of II have been determined at −160°C. The dppm ligand bridges one of the three metal—metal edges in the equatorial plane to give a five-membered ring, which adopts an envelope conformation.

Cluster II functions as a catalyst for the hydroformylation of 1-pentene (80 bar of H2/CO (1/1); 110°C). The results indicate that the dppm bridging ligand stabilizes and activates the cluster for catalysis, and open the way to the synthesis of chiral clusters.  相似文献   


4.
用分级结晶或柱层析方法对2-(2-吡啶基)-4-羧甲基-1,3-噻唑烷(A)及2-甲基-2-(2-吡啶基)-4-羧甲基-1,3-噻唑烷(B)两种手性配体进行提纯,分别考察了其与[Rh(COD)Cl]2制备的在位催化剂催化苯乙酮的不对称硅氢化反应,发现只有噻唑烷环上的C4位手性中心对催化反应结果有影响,其C2位手性中心在Rh(1)催化下发生了快速差向异构化反应.  相似文献   

5.
合成了2种以联萘酚为侧基的手性聚合物, 将其用作手性诱导剂, 与ZnEt2发生配位反应形成自负载催化剂, 进而应用到α,β-不饱和酮的不对称催化反应中. 在温和的反应条件下, 可获得高产率和良好对映选择性(e.e.值高达99%)的目标产物. 回收的聚合物经4或5次循环利用后, 催化活性无明显降低.  相似文献   

6.
The P–Ph cleavage of phenyldibenzophosphole (1) with lithium in THF gives lithium dibenzophospholide (2). Reaction of 2 with ethyleneglycol ditosylate produces the known chelate ligand 1,2-bis(dibenzophospholyl)ethane (3) in good yield. Similarly, 2 and (2R,3R)-butanediol ditosylate give the new chiral chelate ligand (2S,3S)-bis(dibenzophospholyl)butane (4). Ligand exchange of [CpRu(PPh3)2Cl] with 3 or 4 yields the halfsandwich complexes [CpRu(C12H8PC2H4PC12H8)Cl] (5) and [CpRu((S,S)-C12H8PCHMeCHMePC12H8)Cl] (6). Complex 6 was characterized crystallographically (monoclinic, space group P21 (no. 4), a=820.6(4), b=1501.0(3), c=1172.8(6) pm, β=108.87(2)°, V=1.367(1)×109 pm3, Z=2). The most conspicuous feature of the structure of 6 is the perfect coplanarity of the two dibenzophosphole moieties imposed by their steric interaction with the Cp ligand. Complex 6 and the thiophene complex [CpRu((S,S)-C12H8PCHMeCHMePC12H8)(SC4H4)]BF4 (7) derived therefrom are remarkably unreactive with regard to ligand substitutions. A possible explanation is the lack of intramolecular –C stabilization en route to the transition state of ligand substitution. The enantiomeric purity of 6 and 7 could nevertheless be demonstrated by conversion to diastereomerically pure [CpRu((S,S)-C12H8PCHMeCHMePC12H8)((S)-CNCHMePh)]BF4 (8).  相似文献   

7.
A convenient one-step synthesis of chiral γ-lactones has been performed. The method is based on enantioselective hydrogenation of γ-ketoesters using the RuCl3-BINAP-HCl catalytic system. Chiral γ-lactones (91-99% ee) have been isolated in 57-88% yield.  相似文献   

8.
以苯乙烯为原料,通过Sharpless不对称二羟基化反应合成高对映体纯的苯基乙二醇,经酯化、亲核取代反应转化为手性膦-硼烷配合物.后者克服了有机膦配体易氧化的缺点,其制备过程简单,易于提纯,在空气中可长期保存.该手性膦-硼烷配合物在四氟硼酸-甲醚的存在下解络,生成的自由膦不经分离直接与[Rh(COD)Cl]2作用生成手性膦-铑原位催化剂.在α-乙酰氨基肉桂酸甲酯的不对称氢化反应中,转化率为100%,对映选择性88%e.e.  相似文献   

9.
Copolymerization of ethylene with styrene using linked cyclopentadienyl-amide titanium(IV) complexes, [Me2Si(C5Me4)(R)]TiCl2 [R=tert-Bu (1), cyclohexyl (2)], and non-bridged (1,3-Me2C5H3)TiCl2(O-2,6-iPr2C6H3) (3)-MAO catalysts have been explored. Although the catalytic activity by 2 was lower than 1, 2 showed more efficient styrene incorporation than 1 under the same conditions. Moreover, the resultant copolymer prepared by 2 possessed completely different microstructure from those by 1, indicating that the nature of amide ligand affects both styrene incorporation and monomer sequence.  相似文献   

10.
C2-Symmetric bicyclo[2.2.1]hepta-2,5-dienes with various substituents (R=Bn, i-Bu, c-Hex, allyl) are prepared starting from the corresponding enantiomerically pure bis-triflate (R=OTf). These chiral ligands are tested and compared in rhodium(I)-catalyzed 1,4- and 1,2-addition of phenylboronic acid to cyclic enones and aryl aldehydes, respectively. Some interesting reactivity and selectivity effects due to the introduction of sterically demanding or olefinic substituents are reported. Moreover, remarkably high catalytic activity is observed for the rhodium(I)-catalyzed 1,2-addition.  相似文献   

11.
金属参与的不对称催化反应是制备光学活性化合物的重要途径之一, 其中新型手性配体的设计合成一直是不对称催化领域中十分关键且富有挑战性的课题. 从20世纪90年代末开始, 化学家们尝试在手性配体中引入螺环结构, 创造性地发展了螺[4.4]壬烷骨架、 螺双二氢茚骨架、 螺[4.4]壬二烯骨架和螺二色满骨架等手性螺环单齿配体, 多齿配体及其催化剂, 并成功应用于不对称催化氢化、 不对称碳碳键形成或碳杂键形成等不对称转化反应中, 合成了众多富有价值的手性产品, 有力地推动了不对称催化反应的工业应用化进程. 本文综合评述了手性螺环配体的早期发现、 发展历程以及近期的研究成果, 介绍了螺环配体在药物及天然产物中的应用研究进展, 并对手性螺环结构的小分子催化剂的研究进展进行叙述和说明.  相似文献   

12.
A C2-symmetric, chiral bis-cyclosulfinamide-olefin ligand composed of two 1-oxo-2,3-dihydro-1,2-benzisothiazole moieties with rigid skeletons and a conformationally flexible butenylene chain is disclosed for the first time. HRMS and 1H NMR analyses verify that the in situ-generated complex of the ligand and [Rh(C2H4)2Cl]2 possesses a rhodium (I) center coordinated to the tridentate ligand via two sulfinyl moieties and a CdbndC bond. The chiral ligand provided extremely high enantioselectivity (up to >99%ee) in the Rh-catalyzed asymmetric 1,4-additions of arylboronic acids to cyclohexenone and cyclopentenone. The tridentate ligand gave much higher enantioselectivity than the analogous chiral bidentate ligands.  相似文献   

13.
A novel nicotinamide adenine dinucleotide phosphate(NADPH)-dependent carbonyl reductase from Kluyverornyces marxianus(KmCR) was identified, which can convert various prochiral ketone esters and ketone substrates to their corresponding chiral alcohols. KmCR was over-expressed in E. coli BL21(DE3), purified to homogeneity, and characterized. The purified enzyme exhibits the highest activity at 40℃ and pH=6.0. Based on the gel filtration and sodium dodecyl sulfate-polyacrylamide gel eiectrophoresis(SDS-PAGE) analysis, the monomeric protein was determined to have a molecular weight of approximate 39000. Vmax and Km of KmCR are 4.28 μmol.min^-1·mg^-1 and 0.41 mmol/L for ketone ester substrate ethyl 2-oxo-4-phenylbutyrate(OPBE), 3.09μmol.min^-1·mg^-1 and 1.21 mmol/L for cofactor NADPH, respectively. Cofactor recycle was achieved by co-expression of KmCR and glucose dehydrogenase(GDH) in E. coli. Recombinant E. coli harboring KmCR and GDH showed moderate asymmetric reduction activity towards various α- and β-ketoesters, diaryl ketone substrates. In an aqueous/butyl acetate biphasic system, the whole-cell biocatalyst was used to prepare ethyl (R)-2-hydroxy-4- phenylbutanoate[(R)-HPBE] in an e.e. of 99.5% with a space-time yield of 433.6 g.L-1.d-1 and a yield of 80.3% at 270 g/L OPBE.  相似文献   

14.
In the reaction of cis-(CO)4(SnPh3)Re[C(OEt)NR2] (R = ipr (isopropyl), chex (cyclohexyl)) with BI3 the Lewis acid attacks the triphenylstannyl ligand. Substitution of a phenyl for a iodine group leads to equilibrium mixtures of rhenium carbene complexes of general formula cis-(CO)4(SnPh3−χIχ)Re[C(OEt)NR2] (χ = 1−3; R = ipr, chex). By changing the solvent and ratio of can be shifted such that only one major product is formed. Thus this reaction pathway can be used for the preparation of cis-(CO)4(SnPhI2)Re[C(OEt)NR2] (R = ipr, chex). Even when a large excess of BI3 is present electrophilic attack by the Lewis acid on the carbene ligand is not observed.

Synthesis of cis-(CO)4(SnPh3−χIχ)Re[C(OEt)NR2] (χ = 1−3; R --- ipr, chex) can be achieved in high yield by reaction of cis-(CO)4(SnPh3)Re[C(OEt)NR2] (R = ipr, chex) with one, two or three equivalents of HI. This reaction, with successive rupture of the tin-carbon bonds in the triphenylstannyl ligand and the simultaneous formation of benzene, affords the desired substitution product irreversibly. Reaction of cis-(CO)4(SnPh3)Re[C(OEt)NR2] (R = ipr, chex) with I2 gives the compounds, cis-(CO)4(SnI3)Re[C(OEt)NR2] (R = ipr, chex), in relatively low yields.  相似文献   


15.
Both ionic [HgR(DMSO)][CF3SO3] (R = Me or Ph) and covalent HgMeI organomercury(II) compounds react with the tripodal ligand N(CH2CH2PPh2)3 (np3) to yield as ultimate products Hg(II) complexes, the new five-coordinated [Hg(OSO2CF3)(np3)]+ or the known tetrahedral [HgI(np3)]+ and symmetric diorganomercurials respectively. Monitoring of the reactions by 1H, 31P and 13C NMR spectroscopy has shown that the mechanistic pathways depend on the nature of the reagents.  相似文献   

16.
The synthesis of the potential bridging ligand (C6H5)2PCH2CH2Si(CH3)2C5H4 (3) is described. The ferrocene (6 derived from 3 has been found to form macrocyclic complexes with metal fragments NiCl2, NiBr2, and Co2(CO)6. Although monomeric, bimetallic products might have been expected based upon the reduced steric demands of ligand 3 relative to an analogous ligand, (C6H5)2PCH2Si(CH)3)2C5H4 (1), it appears that the increased flexibility in 3 is the overriding factor leading to a preference for inter- rather than intramolecular coordination of the second phosphine function in 6.  相似文献   

17.
The X-ray crystal structure and absolute configuration of (−)436-(η5-C5H5)Fe(CO)(CH3CO)[Ph2PNHCH(Me)(Ph)] have been determined from single crystal diffraction data. The compound crystallizes in the monoclinic space group P21 with two molecules in a unit cell of dimensions a = 10.676(4), b = 8.913(7), c = 13.275(9) Å, and β = 91.36°. The structure was solved by the Patterson method and refined to a final R value of 4.7% using 2299 independent data. The iron atom has distorted octahedral coordination, and the configuration at the iron is found to be (S) for the (−)436 diastereoisomer. The Fe---Cp distances average 2.131 Å, with an Fe-(ring centroid)distance of 1.76 Å. The Fe-acetyl distance is virtually identical to that found in another iron/acetyl complex, but shows substantial variation from other compounds where the nature of the C(=O)R group is changed. Comparison to the Mo-alkyl/Mo-acetyl series is made, and the argument for back-donation in transition metal acyls is strengthened.

The orientation of the acetyl group is determined by a strong NHO intra-molecular hydrogen bond having an NO separation of only 2.86 ». The phosphine ligand has a very short Fe---P bond which could be in part caused by the role of the adjacent nitrogen in hydrogen bonding. The remaining ligand geometry is the same as that found in a recently reported ruthenium structure, although the absolute configurations at the chiral carbons are reversed, with the current compound being designated (S) at this site.  相似文献   


18.
Novel chiral PN4-type multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and various chiral amino-sulfonamides.Their structures were fully characterized by IR,EI-MS and NMR.The catalytic systems,prepared in situ from the multidentate ligands and iridium(I) complexes,showed high activity in asymmetric transfer hydrogenation of propiophenone in 2-propanol solution,leading to corresponding optical alcohol with up to 75%ee.  相似文献   

19.
Attempts were made at epoxidising enantioselectively some simple olefins using MoO3 (0.17 mol%), TBHP and five different chiral non-racemic 2-substituted pyridine ligands. A maximum conversion of 88% using 4-methylstyrene, and a maximum selectivity of ≥98% using 1-methylcyclohexene and 1-phenylcyclohexene were obtained. All ligands screened showed the ability to accelerate the reaction. However, it was ligand 4, that was the quickest to do so and showed the greatest acceleration. The observation of a reaction rate acceleration in the presence of such ligands appeared to indicate the formation of a Mo(VI)oxoperoxy-ligand complex. In no case was asymmetric induction observed.  相似文献   

20.
利用手性双唑啉与三氟甲磺酸亚铜催化2-甲氧基苯乙烯与重氮乙酸二环己基甲酯的不对称环丙烷化反应合成了手性环丙烷羧酸酯,用氢氧化钠对其进行选择性水解得到全反式环丙烷羧酸,其ee值经GC测定为88%.进一步经过Curtius重排、烷基化等反应及重结晶等步骤合成了光学纯的具有生理活性的环丙胺化合物1a和1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号