首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
利用柠檬酸钠还原氯金酸制得金纳米粒子(AuNPs),基于AuNPs/Nafion与Ru(bpy)_3~(2+)之间的静电引力,制备了Ru(bpy)_3~(2+)/AuNPs/Nafion电化学发光传感器。采用循环伏安法和电化学发光法对该传感器进行了表征,结果表明该传感器具有良好的稳定性和重现性,可实现对己烯雌酚的检测。在pH=7.0的0.1mol/L磷酸盐缓冲溶液(PBS,含0.05mol/L三正丙胺)中,当己烯雌酚与修饰电极作用15min时,电化学发光强度减少值与己烯雌酚浓度的负对数在1.0×10-10~5.0×10-7 mol/L范围内呈良好的线性关系,检出限为6.0×10-11 mol/L。对1.0×10-8 mol/L己烯雌酚平行测定11次,相对标准偏差为2.7%。测定己烯雌酚实际样品的加标回收率在98.0%~104.5%之间。  相似文献   

2.
基于苯海拉明对联吡啶钌(Ru(bpy)2+3)的电化学发光的增敏作用和丝素蛋白-联吡啶钌复合膜修饰玻碳电极稳定好的特点,建立了一种以丝素蛋白多孔膜-联吡啶钌复合物修饰的玻碳电极电化学发光检测苯海拉明的新方法.结果表明,该修饰电极具有很好的电化学活性和电化学发光(ECL)响应.在最佳实验条件下,苯海拉明浓度在1.0×10-4~1.0×10-7 mol/L范围内与其相对发光强度呈良好的线性关系(r=0.9989); 检出限为2.3×10-7 mol/L(S/N=3).连续平行测定3.78×10-5 mol/L苯海拉明5次,发光强度的RSD为1.76%. 用于实际样品中苯海拉明的测定,结果满意.  相似文献   

3.
氟嗪酸在碳纳米管修饰电极上的电化学行为及含量的测定   总被引:2,自引:0,他引:2  
在玻碳电极上制备了多壁碳纳米管/Nafion(MWNTs-Nafion)膜,用交流阻抗谱(EIS)、循环伏安法(CV)、线性扫描伏安法(LSV)研究了氟嗪酸在该膜上的电化学行为。与裸玻碳电极相比,这种纳米结构膜修饰的电极对氟嗪酸的电化学氧化显现出极好的促进作用,氟嗪酸的氧化峰电流明显增强,在修饰电极上于 0.97 V处产生了1个灵敏氧化峰。LSV测定氟嗪酸的线性范围为1.0×10-8~1.0×10-6mol/L和1.0×10-6~2.0×10-5mol/L,开路富集400 s后,检出限为8.0×10-9mol/L(3倍信噪比),方法可用于人尿中氟嗪酸的实时测定。  相似文献   

4.
通过自组装技术,制备了羧基化单壁碳纳米管-纳米金复合膜修饰玻碳电极,己烯雌酚在该修饰电极上有良好的电化学行为,于0.20V和0.135V分别出现一氧化还原峰,考察了pH、扫描速度、富集电压、富集时间等对峰电流的影响。利用差分脉冲伏安法,氧化峰峰电流与DES浓度在2.0×10~(-9)~3.0×10~(-7)mol/L范围内呈良好的线性关系,检出限为9.0×10~(-10)mol/L。方法可用于药片中己烯雌酚含量的测定。  相似文献   

5.
以聚乙烯亚胺(PEI)为还原剂,采用一步还原法制备纳米金修饰的还原石墨烯-碳纳米管(AuNPs-rGO-CNTs)复合纳米材料。PEI同时作为交联试剂,使得AuNPs-rGO-CNTs复合物具有良好的成膜性质,能均匀的修饰到玻碳电极表面,制得AuNPs-rGO-CNTs修饰电极。基于过氧化氢(H2O2)作为鲁米诺-电化学发光(鲁米诺-ECL)体系的共反应试剂能显著增强鲁米诺的电化学发光信号,构建了AuNPs-rGO-CNTs复合物修饰的玻碳电极用于电化学发光测定H2O2的新方法。实验采用循环伏安法对传感器的修饰过程进行了表征。对测试底液中鲁米诺的浓度、pH等条件进行了优化,在最优实验条件下,该传感器的电化学发光信号强度与H2O2浓度在3.4×10-2~1.4×102μmol/L范围内呈良好的线性关系,检出限为1.1×10-2μmol/L。传感器适用于H2O2的测定。  相似文献   

6.
基于氧氟沙星对联吡啶钌(Ru(bpy)_3~(2+))电化学发光的增敏作用,建立了一种以多壁纳米碳管(MWCNTs)/二氧化硅-联吡啶钌复合物修饰的玻碳电极电化学发光检测氧氟沙星的新方法.利用溶胶-凝胶(sol-gel)固定化稳定的优点和纳米碳管的电催化作用,提高了传感器的电流响应.在最佳实验条件下,氧氟沙星浓度在4.0×10~(-6) ~1.0×10~(-4) mol/L范围内与相对发光强度呈线性关系(r~2=0.994 8),检出限(S/N=3)为2.0×10~(-6) mol/L.连续平行测定2.4×10~(-5) mol/L的氧氟沙星溶液 5次,发光强度的RSD为1.8%.  相似文献   

7.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

8.
在玻碳电极上制备了碳纳米管负载纳米铂修饰电极(Pt-MWCNTs/GCE)。考察了联吡啶钌和富马酸酮替芬在3个不同电极上的电化学及其发光行为,并对其进行了对比。结果表明,在Pt-MWCNTs/GCE上富马酸酮替芬对联吡啶钌的电化学发光强度有明显的增敏作用,其增敏效果约为MWCNTs/GCE电极的2倍,约为裸玻碳电极的3.5倍,据此,建立了一种Pt-MWCNTs/GCE电极上电化学发光法检测富马酸酮替芬的新方法。在优化实验条件下,富马酸酮替芬的浓度在1.0×10-7~1.0×10-4mol/L范围内与其相对发光强度呈线性关系,线性回归方程为I=48.805×106c+221.03(r=0.9969),检出限为2.4×10-9mol/L,连续平行测定1.0×10-5mol/L的富马酸酮替芬溶液5次,发光强度的RSD为3.3%。对样品进行回收率实验,回收率为99%~104%,RSD为2.1%。  相似文献   

9.
提出了多壁碳纳米管-聚亚甲基蓝(MWNT/PMB)复合膜修饰玻碳电极检测己烯雌酚(DES)的方法,考察了缓冲液、pH、扫描速度等实验参数对测定的影响。在0.2 mol/L的磷酸缓冲液(pH7.0)中,DES在复合膜电极上出现了一个明显的氧化峰,峰电位在0.197 V处。与裸电极相比较,修饰后的电极能显著提高DES的氧化峰电流并降低其氧化电位,表明MWNT/PMB复合膜对DES有电催化作用。峰电流与己烯雌酚浓度在3.73×10-11~3.73×10-8mol/L范围内呈线性关系,检出限为2×10-11mol/L;用此法对己烯雌酚药片的含量进行了测定,测定结果与标示相符。  相似文献   

10.
制备了介孔炭/纳米金修饰玻碳电极,并对对苯二酚(HQ)在该修饰电极上的电化学行为进行了研究。与HQ在纯介孔炭材料修饰玻碳电极上的电化学响应相比,HQ在该修饰电极上的氧化峰和还原峰电流均大大增加,表明纳米金与介孔炭复合后对HQ具有良好的催化作用。HQ在该修饰电极上经过富集后,峰电流明显增大。采用循环伏安法对HQ电化学行为进行研究,结果表明,HQ在3.0×10-8~1.0×10-6mol/L和1.0×10-6~1.0×10-4mol/L浓度范围内与峰电流呈良好的线性关系,据此建立了检测HQ的电化学分析方法。该方法的相对标准偏差为0.69%,检出限(S/N=3)为1.0×10-8mol/L,具有较高的稳定性和灵敏度。  相似文献   

11.
《Analytical letters》2012,45(11-12):1273-1288
Abstract

L-glutamate was determined by recycling in a bienzyme system consisting of glutamated dehydrogenase and glutamate pyruvate transaminase. The NADH produced in the dehydrogenase reaction was determined either by direct oxidation at a modified graphite electrode or by reoxidation with oxygen through a N-methylphenazinium ion mediator. The oxygen was determined with an oxygen electrode. The former system resulted in an amplification of 15 and the latter of 60 times.The detection limits became 5-10?7 and 1-10?7 M L-glutamate for the respective systems.  相似文献   

12.
采用循环伏安法考察了所制备的聚氯乙烯(PVC)膜修饰电极的稳定性,结果表明,该修饰电极性能稳定,电极反应过程为扩散控制的过程。以循环伏安法、计时库仑法、稳态极化曲线法和交流阻抗法分别考察了阳离子(十六烷基三甲基溴化铵,CTMAB)、阴离子(十二烷基硫酸钠,SDS)和非离子(脂肪醇聚氧乙烯醚,AEO9)3种不同类型的表面活性剂对PVC膜-Ag[B(ph)4]修饰电极反应过程的影响。结果表明:加入CT-MAB或SDS后,PVC膜中Ag[B(ph)4]氧化态和还原态的扩散系数分别比电极在0.1mol/LKOH支持电解质中的扩散系数小,PVC膜修饰电极的反应过程受扩散控制的特征变得更明显,表明在此条件下膜中的电子转移速度加快,CTMAB或SDS对PVC膜修饰电极的电极反应过程有增敏作用。而加入AEO9后,PVC膜中的Ag[B(ph)4]氧化态和还原态的扩散系数比电极在0.1mol/LKOH支持电解质中的扩散系数大,并使电极反应的控制步骤从扩散控制转向含电子转移控制的扩散控制,表明在此条件下膜中的电子转移速度变慢,AEO9对PVC膜修饰电极的电极反应过程有抑制作用。  相似文献   

13.
铅基磷酸铅化学修饰电极的研究   总被引:3,自引:0,他引:3  
孙玉堂  刘强 《分析化学》1995,23(11):1274-1276
本研制了铅基磷酸铅化学饰电极,并研究了该CME的性能。实验发现,该CME是一种磷酸根离子敏感电极。电极对磷酸盐有类能斯特响应,在PH4.0和6.0下,其线性范围分别为1×10^-3-1×10^-1和1×10^-4-1×10^-2mol/L磷酸盐,电极响应斜率为23-27mV/dec.电极有较好的稳定性重现性,可望用于磷酸盐的实际分析。  相似文献   

14.
高稳定性普鲁士蓝修饰电极的制备和研究   总被引:4,自引:0,他引:4  
采用恒电流电解方法,使用FeCl_3-K_3Fe(CN)_6和Fe~(?)L_(?) -K_3Fe(CN)_6(L,邻菲绕啉,EDTA,5-磺基水杨酸等)两体系,在玻碳和铂基体上均制得高稳定性普鲁士蓝膜。用循环伏安法在lmol·dm~(-3)KCl(pH4)溶液中,重点地在0.6--1.1V(vs.Ag/AgCl)区间研究了膜的电化学稳定性。在玻碳基体上FeCl_3,-K_3Fe(CN)_6和Pe~(?)·L_(?) -K_3Fe(CN)_6体系电积膜分别可经受10~(?)周和2×10~(?)周扫描。在铂基体上则可分别经受2×10~(?)和7×10~(?)周扫描。红外和X-射线衍射证明两体系制得的膜均为普鲁士蓝膜,稳定性的明显差异是由于普鲁士蓝晶粒度的不同和在基体表面的相对取向不同引起的。对影响膜的稳定性的因素作了较系统的研究。  相似文献   

15.
用溶胶-凝胶包埋硝酸银制备了碘离子选择性电极.电极对I-离子在10-1~10-7mol/L浓度范围内呈Nernst响应,斜率为58.321 mV/pI-,检测下限为4.6×10-8mol/L,回收率为97.4%~103.2%.  相似文献   

16.
咖啡因和茶碱在聚合物修饰电极上的电化学行为   总被引:3,自引:0,他引:3  
研究了咖啡因 (CAF)和茶碱 (THEO)在聚对氨基吡啶 (POAP)修饰电极上的电化学行为。POAP电极对CAF和THEO的电氧化反应具有良好的催化能力 ,两反应物的电氧化呈现完全不可逆过程 ,峰电位相差 130mV左右 ,在最佳条件下测定 ,氧化峰电流与它们的浓度在 5× 10 -8~ 1× 10 -5mol/L之间均呈良好的线性关系。CAF和THEO在POAP电极上具有良好的重现性和稳定性 ,用于多种样品中CAF和THEO测定 ,结果令人满意。  相似文献   

17.
对半导体电极表面进行修饰,使它能吸收与太阳.光谱相匹配波长范围的光和具有良好电化学活性是光电化学研究领域中的一个课题.  相似文献   

18.
碳糊电极溶出伏安法测定痕量金属离子的研究   总被引:2,自引:1,他引:2  
彭图治  王国顺 《分析化学》1990,18(4):373-376
  相似文献   

19.
水滑石的合成及修饰电极的电化学行为   总被引:1,自引:0,他引:1  
徐芳  王军涛  费锡明 《合成化学》2006,14(2):175-177
采用共沉淀法合成了摩尔比为3∶1的镍铝、钴铝、镁铝碳酸型水滑石。采用循环伏安法对其所修饰的玻碳电极的电化学行为进行了研究,结果表明仅有镍铝水滑石所修饰的玻碳电极具有较好的电化学行为。  相似文献   

20.
周延秀  朱果逸 《分析化学》1993,21(8):887-891
本文利用聚苯胺薄膜化学修饰电极对巯基化合物的促进作用进行了研究,结果表明,这种促进作用是对巯基乙醇在PAn薄膜表面的氧化还原过程的一种加强,而这种加强作用是通过-SH与PAn中的N以质子形式加成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号