首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文在高频交流激励模式下,采用同轴圆柱构型激励器,开展了介质阻挡体放电对空气/甲烷同轴剪切扩散火焰燃烧特性影响实验研究。激励器敷设在外喷嘴环缝以电离空气,采用纹影系统和B型热电偶分别获取流场形态和火焰温度,激励频率为8 kHz,通过改变气体流量和放电电压,分析了不同工况下射流流场、火焰结构和火焰温度在等离子体作用下的变化规律。结果表明:等离子体气动效应能有效增强射流湍流强度,强化空气/甲烷掺混,增大射流角,并随激励电压提高作用效果逐渐增强,实验中未形成明显扩张流动的初始射流在放电电压30 kV时其射流角最大为23.5°。贫燃条件下等离子体激励会改善火焰形态,增强燃烧稳定性,并在流量较低时缩短火焰长度。此外,富燃火焰下游温度会随着激励强度增大不断升高,而贫燃火焰下游温度变化受上游燃烧强度影响存在升高和降低两种情况。  相似文献   

2.
利用低功率电弧放电辅助甲烷燃烧,研究了在不同甲烷/空气比例的情况下,等离子体对甲烷燃烧的影响。采用发射光谱仪进行光谱诊断,比较有/无等离子体辅助甲烷燃烧火焰发射光谱的异同,讨论了等离子体辅助燃烧可能发生的过程和机理。比较有/无等离子体辅助甲烷燃烧火焰温度的变化。利用气相色谱和烟气分析仪对甲烷燃烧产物中的CH4、CO 和O2 进行分析。实验结果表明,加等离子体后,火焰的温度升高,尾气中的可燃性成分减少,氧气含量降低,在很大程度上提高了甲烷的燃烧效率;甲烷/空气的比例越低,燃烧效率的提高越明显;甲烷的富燃燃烧极限从16%调高到21%。  相似文献   

3.
为了获得可燃气体的放电及等离子体发射光谱特性,进一步揭示等离子体助燃作用下燃料在稀燃状态的点火与燃烧特性,在常压下以氩气作为载气对预混的甲烷和空气进行放电研究。实验基于平行板电极射频(13.56 MHz)介质阻挡放电的等离子体发生装置,首先在常压下对体积分数为90%氩气/10%空气的混合气体开展放电研究;再在90%氩气含量不变的情况下,调节空气含量并加入与之能形成燃烧化学当量比Φ=1的甲烷,氩气/甲烷/空气的混合气体同样能实现稳定而均匀的放电;最后分别在90%氩气含量不变,甲烷和空气在当量比为Φ=0.4~1.9六种情况下进行放电实验。由光谱仪记录不同放电工况下的发射光谱信息,诊断反应产物类型,利用观测到的氮分子第二正带系(0-2)380.4 nm和(1-3)375.4 nm处的发射谱线,与自编程序计算的模拟谱线拟合,得出分子转动温度(即气体温度)。研究结果表明:通过拟合模拟光谱与实验所测发射光谱的方法推测分子转动温度,进而获得气体的平动温度,氩气/空气放电的气体温度可达到1 150 K,氩气/甲烷/空气Φ=1时放电气体温度升高到1 390 K;甲烷与空气形成不同当量比时,所测等离子体气体温度相对于90%氩气/10%空气混合气体温度的温升在70~240 K范围变化;由光谱信息观测到CH,H,OH和CH2O等活性粒子的存在以及气体温度的升高,表明可燃成分混合气在射频电场放电作用下发生等离子体燃烧化学反应并释放出化学热。  相似文献   

4.
通过将介质阻挡放电应用于燃烧增强,实验研究了非平衡等离子体对于入流脉动条件下丙烷预混火焰的影响。通过本生灯法测定火焰速度,通过气相色谱分析确定丙烷燃料经非平衡等离子体作用后的组分并计算物性,重点研究了不同限流速度、脉动幅度以及平均流速下等离子体对吹熄极限的影响。实验结果表明,非平衡等离子体使丙烷预先裂解,提高火焰速度,并在一定区间内优化吹熄特性,增强燃烧稳定性。  相似文献   

5.
对未燃烧的可燃混合气体进行DBD放电,放电后会产生大量的活性粒子,这些活性粒子可以辅助气体燃烧,达到提高燃料燃烧利用率等目的。以DBD激励氩气、甲烷、空气产生的自由基(CH基和OH基)等强化燃烧的关键活性粒子为探索对象,研究DBD放电激励甲烷对滑动弧火焰的影响。为此,采用自主设计的DBD-滑动弧双模式等离子体激励器,利用同轴介质阻挡放电结构对氩气、甲烷、空气混合气进行放电激励,将激励后的氩气、甲烷、空气混合气通入滑动弧端进行点火。固定氩气流量不变,调整空气流量为4.76 L·min-1,并加入甲烷0.5 L·min-1,保证进气通道内氩气与空气-甲烷的气体体积流量比达到Ar∶(CH4+Air)=1∶30,其中空气、甲烷这两种气体达到了化学燃烧当量比φ=1,氩气、甲烷、甲烷混合气体能实现均匀而稳定的放电并燃烧。DBD段放电电压在15~20 kV范围变化,放电频率在6~10 kHz范围变化,滑动弧段的电压和频率分别保持4 kV与10 kHz恒定,通过改变DBD段放电电压和放电频率,用高速光纤光谱仪检测滑动弧火焰中自由基种类及其光谱强度,分析放电参数激励甲烷对火焰中自由基(CH基和OH基)的影响。结果表明,DBD段放电电压及放电频率的增加可以促进火焰内部的偶联反应发生,可有效提升甲烷滑动弧火焰内部的活性粒子含量,其中OH基团、CH基团在燃烧链式化学反应进程中发挥着较为重要的作用。甲烷经过DBD激励后,随放电电压和频率的增加,火焰中OH基、CH基等主要活性粒子都随之增加。DBD放电后,活性粒子的光谱强度增大,特征谱线比单模式更加明显;甲烷经过DBD激励后,火焰组成发生了变化,滑动弧段出口处甲烷燃烧反应更加充分,火焰温度越高越容易产生OH基。与单模式滑动弧相比,双模式放电可有效促进火焰内部的链式化学反应进程,促进燃料燃烧。  相似文献   

6.
在微波化学气相沉积装置上采用微波激发氢气甲烷体系等离子体,通过光学多道分析仪采集等离子的发射光谱.实验表明,甲烷在等离子体中的裂解产物主要以CH,CH-,C2基团的形式存在.这些基团的发射光谱强度主要受放电压强和放电功率的影响.随着微波功率的增加甲烷基团发射光谱强度呈增长的趋势;而随着放电压强的增加则是先增大,后减小.这些实验结果对于理解微波等离子体化学气相沉积(MPCVD)中各种反应过程,调整薄膜制备工艺提供了参考.  相似文献   

7.
感应耦合等离子体发生器是"临近空间高速目标等离子体电磁科学实验研究装置"的核心部件之一,常用于模拟高焓高速等离子体鞘套环境,为了研究大功率射频中压下感应耦合等离子体发生器的放电特性,采用数值模拟和实验相结合的方法研究其内部的传热与流动特性.本文基于局域热力学平衡条件,通过湍流场-电磁场-温度场的多场耦合开展了功率为100—400 kW的大尺寸射频中压感应耦合等离子体的数值模拟,并通过光强与光谱实验验证.结果表明:大功率等离子体发生器中的电磁场分布类似于中小型功率等离子体发生器;放电能量耗散主要发生在感应线圈所在的区域;石英管内壁温度在线圈所在处比其他区域较高,等离子体呈环状高温结构;等离子体受温差效应与电磁泵效应影响使得入口处产生回流涡.同时开展相应条件下的放电实验发现氩气放电的轴向图像呈边缘高亮与中心暗的环状结构,并通过光谱诊断系统测量氩等离子体的发射光谱,得到发生器电子温度的空间分布, COMSOL仿真温度结果与放电图像光强、光谱测得电子温度较为符合,验证了采用热力学平衡态条件进行数值模拟结果的有效性.本文数值模拟的结果可用于感应耦合等离子体发生器的优化设计及耐温评估.  相似文献   

8.
郭鹏  陈正 《工程热物理学报》2011,(12):2160-2163
本文基于零维均质着火系统研究了非平衡等离子中臭氧(O3)对甲烷/空气着火过程的影响,并通过化学反应路径分析揭示了O3促进甲烷/空气着火的化学反应机理。研究结果表明,O3促进甲烷/空气着火手要是通过化学反应动力学效应来实现的,热效应的影响十分有限。在不添加O3时,甲基的氧化速率缓慢,从而导致甲烷/空气不易着火;在添加O3...  相似文献   

9.
为了更加深入的研究大气压条件下Ar/CH4等离子体射流的放电机理和其内部电子的状态,通过自主设计的针-环式介质阻挡放电结构,在放电频率10 kHz、一个大气压条件下产生了稳定的Ar/CH4等离子体射流,并利用发射光谱法对其进行了诊断研究。对大气条件下Ar/CH4等离子体射流的放电现象及内部活性粒子种类进行诊断分析,重点研究了不同氩气甲烷体积流量比、不同峰值电压对大气压Ar/CH4等离子体射流电子激发温度、电子密度以及CH基团活性粒子浓度的影响规律。结果表明,大气压条件下Ar/CH4等离子体射流呈淡蓝色,在射流边缘可观察到丝状毛刺并伴有刺耳的电离声同时发现射流尖端的形态波动较大;通过发射光谱可以发现Ar/CH4等离子体射流中的主要活性粒子为CH基团,C,CⅡ,CⅢ,CⅣ,ArⅠ和ArⅡ,其中含碳粒子的谱线主要集中在400~600 nm之间,ArⅠ和ArⅡ的谱线分布在680~800 nm之间;可以发现CH基团的浓度随峰值电压的增大而增大,但CH基团浓度随Ar/CH4体积流量比的增大而减小,同时Ar/CH4等离子体射流中C原子的浓度随之增加,这表明氩气甲烷体积流量比的增大加速了Ar/CH4等离子体射流中C-H的断裂,因此可以发现增大峰值电压与氩气甲烷体积流量比均可明显的加快甲烷分子的脱氢效率,但增大氩气甲烷体积流量比的脱氢效果更加明显。通过多谱线斜率法选取4条ArⅠ谱线计算了不同工况下的电子激发温度,求得大气压Ar/CH4等离子体射流的电子激发温度在6 000~12 000 K之间,且随峰值电压与氩气甲烷体积流量比的增大均呈现上升的趋势;依据Stark展宽机理对Ar/CH4等离子体射流的电子密度进行了计算,电子密度的数量级可达1017 cm-3,且增大峰值电压与氩气甲烷体积流量比均可有效的提高射流中的电子密度。这些参数的探索对大气压等离子体射流的研讨具有重大意义。  相似文献   

10.
甲烷-湿空气对冲扩散火焰中CO的生成特性   总被引:1,自引:0,他引:1  
本文描述了HAT循环中CO排放的基础研究结果。为了澄清加湿和CO排放的关系,采用GRI-mech3.0详细化学反应机理,对甲烷-湿空气对冲扩散火焰进行了数值研究。对不同的空气含湿量通过改变进口预热温度调节最高火焰温度,解耦湿空气影响火焰的温度和自由基浓度效应,研究甲烷-湿空气火焰中CO生成的化学机理。计算结果表明在火焰最高温度相同的情况下,湿空气中的水蒸汽使OH基浓度增加、O基和H基浓度降低,从而抑制CO的生成。这些结果有益于准确预测HAT循环中CO的排放。  相似文献   

11.
本文针对甲烷-空气预混火焰中离子对火焰化学动力学特性的影响开展了理论模拟研究。在不同外加电场作用条件下,分析了离子从火焰面区域迁移到低温预热区时对当地化学反应的影响规律。研究表明,低温区内(~800 K)离子对反应速率的影响较大,甚至反应时间可减少65%,而对于1200 K以上高温区该影响则可忽略。实验结果进一步揭示了电场对旋流火焰的影响主要是通过离子风效应改变了火焰面位置和形状而造成的。  相似文献   

12.
金刚石膜合成条件下的鞘层与等离子体参数分布   总被引:1,自引:0,他引:1  
本文报导了在用热阴极直流放电等离子体化学气相沉积(通常也称EACVD.即电子辅助化学气相沉积)方法合成金刚石的条件下的等离子体密度、电子温度、等离子体空间电位分布及基片附近等离子体鞘结构,并讨论其对成膜的影响.  相似文献   

13.
为了进一步揭示等离子体强化甲烷点火过程的化学动力学机理,设计和搭建了介质阻挡放电等离子体激励空气的实验系统,实验测量了在空气中介质阻挡放电等离子体激励器产生的发射光谱,利用光谱技术分析了等离子体激励空气产生的若干活性粒子,给出了零维均质点火模型以及敏感性分析和化学路径分析的计算方法,模拟了不同初始温度下NO和O3对甲烷点火延迟时间的影响,并分析了活性粒子NO和O3强化甲烷点火的化学动力学过程。研究表明:介质阻挡放电等离子体激励空气主要产生N2和O2的若干激发态粒子,并最终转化成存活时间较长的活性粒子NOx和O3,等离子体对甲烷点火过程的影响可以简化成活性粒子NOx和O3对甲烷点火过程的影响;CH3的氧化速率决定了甲烷点火过程的快慢,在自点火过程中CH3的氧化路径是反应式R155和R156,初始温度较低时R155和R156的反应速率慢,所以甲烷的点火延迟时间长;NO缩短点火延迟时间是由于CH3的氧化路径由自点火过程中的反应式R155和R156改为反应式R327 CH3O2+NO=CH3O+NO2和R328 CH3+NO2=CH3O+NO;O3强化甲烷点火过程同样是由于O3改变CH3的氧化路径,从化学动力学上缩短点火延迟时间。  相似文献   

14.
利用自行研制的强磁场螺旋波等离子体化学气相沉积装置(HWP-CVD),通过改变等离子放电参数,实现多种碳基薄膜制备.利用朗缪尔探针、发射光谱以及质谱对Ar/CH_4等离子体放电进行原位诊断;用扫描电子显微镜和拉曼光谱对碳基薄膜进行表征.结果表明:在给定参数下,等离子体放电模式均为螺旋波放电模式;在给定CH_4流量下,等离子体中电子能量分布均足以使甲烷分子离解,并形成含碳活性自由基.通过CH_4流量调整,实现了不同碳基薄膜的制备.研究表明:当等离子体中富含CH和H自由基时,适合类金刚石薄膜生长;当等离子体中富含C_2自由基和少H时,适合垂直石墨烯纳米片生长.根据等离子体诊断和薄膜表征结果,提出了Ar螺旋波等离子体作用下甲烷分子的裂解机理,建立了碳基薄膜的生长模型;验证了Ar/CH_4–HWP在碳基纳米薄膜制备中的可行性,为HWP-CVD技术制备碳基纳米薄膜提供借鉴.  相似文献   

15.
大气压氩等离子体射流是一种非平衡等离子体,能够产生大量的电子、离子、激发态粒子和活性基团,在燃烧过程中这些粒子的参与能够大大降低化学反应的活化能,而等离子体射流的动力学效应影响粒子输运过程,使得等离子体射流具有一定程度的辅助燃烧效果。本实验通过发射光谱测量,分别识别出了在非预混和预混的甲烷燃烧过程参与燃烧的中间物种(OH,CH和C2),测量了这些自由基的发射光谱强度随着外部控制变量(放电电压、混合当量比)变化的规律。对于非预混情况,实验发现随着产生等离子体射流放电电压的增大,火焰总体长度变短,火焰面出现褶皱,火焰根部蓝色区域面积不断扩大,在22 kV时,大约占总火焰面积的1/2。对火焰根部的发射光谱测量结果表明,当电压达到16 kV时,发射光谱明显增强,而当电压进一步增大到22 kV时,这些自由基粒子的光谱强度却出现下降,这归因于在等离子体产生的电离风作用下管内气体流速增大,导致燃烧区发生移动远离喷口,使采集到的火焰根部区域变小造成的。另外,研究了在不同的燃料当量比下等离子体射流对预混气体助燃的过程,实验发现燃料当量比为2时,OH(A-X)的光谱发射强度随电压的增大而增强而CH(A-X)和C2(d)的发射强度在等离子体射流直接作用的情况下减小,反映了在氩等离子体射流参与助燃下燃烧变得更加充分了。实验发现等离子体射流产生大量的自由基以及等离子体电离风对混合过程的影响能够对燃烧过程产生明显影响。  相似文献   

16.
采用平面火焰燃烧器实现了一种甲烷预混倒置焰锥抬升火焰,在没有发生放电击穿的条件下着重分析了高频高压电场对火焰的影响。实验观测发现倒置焰锥火焰的抬升高度受高频高压电场的增强而降低,并且焰锥夹角随电压的增加而减小。对照实验现象分析,结果表明由于高频高压电场带来的离子风效应较小,高频高压电场对火焰面中电子或离子参与的化学反应碰撞的增强可能是最主要的原因。  相似文献   

17.
两间隙毛细管等离子体射流发生器主放电数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
 消融放电毛细管等离子体发生器产生的等离子体射流具有密度高和温度相对低的特性,在许多领域都具有潜在的应用前景。利用1维流体模型对两间隙毛细管等离子体射流发生器的主放电特性进行了模拟计算分析。模型考虑了焦耳热效应和管壁烧蚀对放电特性的影响。在管壁消融这种反馈稳定机制作用下,毛细管放电处于准稳态,其产生的等离子体温度在放电期间保持恒定。在放电能量为1 kJ的条件下,聚乙烯毛细管等离子体温度可达3 eV,电子密度可达1025 m-3量级,射流速度接近10 km/s。改变放电输入的焦耳热功率密度,等离子体温度和速度变化较小,但气压、质量密度以及等离子体电子密度等特性参数均可以获得较大幅度的改变。  相似文献   

18.
测量了氢灯放电波长处于325~675nm的光谱,通过光谱强度和波长等数据,利用等离子体局域热平衡条件,计算了氢气放电等离子体的激发温度、振动温度和转动温度.  相似文献   

19.
利用发射光谱测量技术分析了介质阻挡放电等离子体激励空气产生的主要活性粒子,利用零维等离子体动力学模型模拟了甲烷/空气中放电阶段主要活性粒子的演化规律,并通过敏感性与化学路径分析研究了O原子影响甲烷点火过程的化学动力学机理。研究表明:空气中介质阻挡放电等离子体主要产生N2和O2的激发态粒子,激发态粒子的数密度随着电压的增加而增大;激发态粒子经过一系列物理化学反应最终转化成若干自由基,其中O原子的摩尔分数最大;O原子缩短甲烷点火延迟时间一个量级,原因在于添加O原子后甲基(CH3)的氧化途径由自点火过程中的经O2直接氧化为CH3O和CH2O转变为经HO2和O原子氧化为CH3O和CH2O,由于后者的基元反应速率快,因而明显缩短了点火延迟时间。  相似文献   

20.
利用多孔狭缝喷嘴考察了不同壁面条件对平行平板间甲烷/空气预混火焰熄火的影响规律,并采用表面分析手段探讨了不同材料对熄火特性的影响因素.实验结果表明壁面温度和表面特性都会影响熄火特性,熄火间距随着壁面温度的升高而单调减小,材料不同时熄火间距的差别在低温和高温时较小,在壁温为400℃时最大.化学熄火效应与表面化学吸附的OH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号