首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 531 毫秒
1.
等离子体助燃旋流扩散火焰的光谱分析   总被引:1,自引:0,他引:1  
介质阻挡放电(DBD)辅助燃烧是等离子体技术领域发展起来的新的应用途径.本文利用CCD相机及光谱仪记录并分析甲烷-空气旋流扩散燃烧火焰形态及特征光谱,研究了等离子体激励的助燃、稳燃机理,分析了不同激励方式对等离子激励效果的影响。实验结果表明,等离子体激励放电会产生大量的自由基及活性基团,如CH,OH,O~+,O原子的各激发态能级及N_2第一正带系等谱线,其中重点分析了加电前后及不同激励方式下O原子(3s~3S~0→3p~5P,λ=777.5 nm)及氮气第一正带系B~3Π_g→A~3∑_u~+粒子(振动带波长为λ=891.2 nm)发射光谱变化,由于氮原子与氧原子均为加速燃烧的重要活性粒子,这些基团的产生使得甲烷更容易发生一系列链式氧化反应。定常激励产生的活性粒子浓度大于未经过等离子体激励及非定常激励下所产生的活性粒子浓度;经过等离子体激励后火焰根部更靠近燃烧器喷嘴底部,说明等离子体激励产生的活性粒子加速了链式反应的进行,缩短了点火迟滞时间.  相似文献   

2.
脉冲电晕放电中OH自由基的发射光谱研究   总被引:2,自引:0,他引:2  
采用发射光谱法测量了在加湿的空气、氮气、氩气3种气体背景下脉冲电晕放电产生的OH自由基,通过对发射谱线的分析,研究了在3种背景条件下,脉冲峰值电压、脉冲频率等因素对OH自由基产生过程的影响,着重研究了气体湿度对OH自由基产生过程的影响以及OH自由基在放电电场中的分布特性。实验表明OH自由基的生成量随脉冲峰值电压和脉冲频率的增大而增大,而湿度变化对其影响则与放电背景环境有关,不同背景气体下其变化规律也不相同。空气中放电时产生的OH自由基数量随湿度的增大而增大,氮气中OH自由基的生成量随湿度增大呈先增大后减小趋势,而氩气中OH自由基数量随湿度的增大呈先减少后增大趋势。OH自由基在放电电场中的分布呈从针电极中心向四周逐渐减少趋势。  相似文献   

3.
气液两相滑动弧放电中自由基的光谱研究   总被引:1,自引:0,他引:1  
气液两相滑动弧放电是近年来出现的一种新型低温等离子体废水处理技术,对高浓度有机废水具有很好的降解效果。为了认识气液两相滑动弧放电降解有机废水的机理,用发射光谱法对气液两相滑动弧在空气中放电所产生的主要自由基进行了实验研究,分析了自由基持续再生的化学过程。通过对光谱线强度变化的分析,得到了OH和NO自由基谱线强度在放电反应空间的分布特点,以及输入电压和液相(水)流量因素对OH和NO自由基产生过程的影响。结果表明:OH是气液两相滑动弧放电的主导自由基;OH和NO自由基谱线强度沿着电极中轴均先增后减;在非平衡区域,自由基谱线强度随着输入电压的增大而增大;OH自由基谱线强度随水流量的增大而增大,NO自由基谱线强度则随着水流量的增大而减小。  相似文献   

4.
本文在高频交流激励模式下,采用同轴圆柱构型激励器,开展了介质阻挡体放电对空气/甲烷同轴剪切扩散火焰燃烧特性影响实验研究。激励器敷设在外喷嘴环缝以电离空气,采用纹影系统和B型热电偶分别获取流场形态和火焰温度,激励频率为8 kHz,通过改变气体流量和放电电压,分析了不同工况下射流流场、火焰结构和火焰温度在等离子体作用下的变化规律。结果表明:等离子体气动效应能有效增强射流湍流强度,强化空气/甲烷掺混,增大射流角,并随激励电压提高作用效果逐渐增强,实验中未形成明显扩张流动的初始射流在放电电压30 kV时其射流角最大为23.5°。贫燃条件下等离子体激励会改善火焰形态,增强燃烧稳定性,并在流量较低时缩短火焰长度。此外,富燃火焰下游温度会随着激励强度增大不断升高,而贫燃火焰下游温度变化受上游燃烧强度影响存在升高和降低两种情况。  相似文献   

5.
为了获得可燃气体的放电及等离子体发射光谱特性,进一步揭示等离子体助燃作用下燃料在稀燃状态的点火与燃烧特性,在常压下以氩气作为载气对预混的甲烷和空气进行放电研究。实验基于平行板电极射频(13.56 MHz)介质阻挡放电的等离子体发生装置,首先在常压下对体积分数为90%氩气/10%空气的混合气体开展放电研究;再在90%氩气含量不变的情况下,调节空气含量并加入与之能形成燃烧化学当量比Φ=1的甲烷,氩气/甲烷/空气的混合气体同样能实现稳定而均匀的放电;最后分别在90%氩气含量不变,甲烷和空气在当量比为Φ=0.4~1.9六种情况下进行放电实验。由光谱仪记录不同放电工况下的发射光谱信息,诊断反应产物类型,利用观测到的氮分子第二正带系(0-2)380.4 nm和(1-3)375.4 nm处的发射谱线,与自编程序计算的模拟谱线拟合,得出分子转动温度(即气体温度)。研究结果表明:通过拟合模拟光谱与实验所测发射光谱的方法推测分子转动温度,进而获得气体的平动温度,氩气/空气放电的气体温度可达到1 150 K,氩气/甲烷/空气Φ=1时放电气体温度升高到1 390 K;甲烷与空气形成不同当量比时,所测等离子体气体温度相对于90%氩气/10%空气混合气体温度的温升在70~240 K范围变化;由光谱信息观测到CH,H,OH和CH2O等活性粒子的存在以及气体温度的升高,表明可燃成分混合气在射频电场放电作用下发生等离子体燃烧化学反应并释放出化学热。  相似文献   

6.
本文实验研究了高频交变电场对甲烷/空气扩散火焰的影响,在较大的电压变化范围内对比了火焰的形态、中间产物浓度和燃烧产物组成的变化。实验结果表明,随着电场电压从零开始不断增大直到发生气体放电,CH和OH的体积浓度先减小后增大,最后维持在比较稳定的范围内;产物中NO的体积分数先减小,后增大,发生气体放电后急剧减小,而CO体积分数变化与NO正好相反。发生气体放电时不完全燃烧加剧,火焰不稳定性增强。  相似文献   

7.
采用微间隙平行平板介质阻挡放电(DBD)装置,以氩气作为工作气体,研究了锯齿波激励下DBD的放电图像、发光信号、发射光谱与锯齿波频率的关系。研究发现随锯齿波频率增加,DBD会从均匀模式(低于10 kHz),经历微放电丝与均匀放电共存,并最终过渡到微放电丝占据全部的电极区(频率高于35 kHz)。外加电压和发光波形表明,锯齿波频率较低时的均匀放电对应高占空比的阶梯放电。随频率增大,出现微放电丝后,发光波形呈现多脉冲形式,且电压半周期中的发光脉冲个数随着锯齿波频率的增大而减小。当锯齿波频率高于35 kHz时,每半个电压周期的发光脉冲个数减小为一个(单脉冲放电)。通过对放电的发射光谱进行研究,发现发射光谱中包含氮分子的第二正带系(C3ΠuB3Πu),OH(A2Σ+→X2Π)和ArI的特征谱线。研究表明OH(308.8 nm)和ArI(750.4 nm)的谱线强度均随锯齿波频率的增大而增大。  相似文献   

8.
水雾作用下富燃料甲烷预混火焰化学发光特性   总被引:1,自引:0,他引:1  
利用阶梯光栅光谱仪与自行研制的水雾协流管式燃烧器,对富燃料甲烷/空气层流预混火焰化学发光特性进行实验研究.分析了锥形预混火焰燃烧过程中火焰面OH、CH以及C2自由基粒子光谱强度分布规律,以及水雾协流作用下的预混火焰发射光谱特性,探讨了水雾液滴对富燃料甲烷预混火焰发射光谱的影响.实验结果表明:当水雾量充足时,作用于内锥火焰阵面的水雾液滴使得火焰阵面OH、CH以及C2自由基粒子发射光谱强度减弱,抑制预混火焰燃烧;当作用于火焰面的水雾载荷比较小时,富燃料预混火焰的OH、CH的发射光谱强度得到一定程度的增强.  相似文献   

9.
氢能作为一种高热值、无污染的清洁能源日渐受到国内外专家学者的追捧。微波液相放电技术在醇类中制氢具有光明的研究前景,为氢能的研究开发开辟了一条新的途径。通过对乙醇制氢发射光谱分析,有利于分析微波液相放电醇类制氢机理的探讨,为进一步改进微波液相放电制氢技术奠定基础。本文采用2.45 GHz频率微波在液相醇类中放电实现了微波液相等离子体制氢,并借助发射光谱仪对微波液相放电乙醇制氢光谱特性进行了研究。研究结果显示:微波液相放电乙醇制氢过程中,能产生大量的H,O,OH,CH,C2等活性粒子;乙醇放电光谱中OH自由基、H自由基和O自由基的光谱强度要远大于纯水中OH自由基、H自由基和O自由基的光谱强度;高能粒子打开水分子中的O—H键,脱氢制氢的过程较乙醇分子难度要大,因此在微波乙醇放电制氢过程中,氢气的来源主要是乙醇分子的脱氢重组,水分解产氢的贡献度较低;在外界压力与温度一定的条件下,OH,H,O自由基的发射光谱强度随着功率的增加显著增强,而CH和C2活性粒子发射光谱强度则出现减弱趋势,这表明较大的微波功率不仅使产生的高能粒子的能量增加,同时高能粒子的密度也有所增加,导致较多的CH和C2基团被充分碰撞打开。  相似文献   

10.
采用光谱在线技术(OES)检测了大气压 Ar/NH3 DBD 等离子体中的主要粒子为 NH,N,N+,N2, Ar,Hα,OH。NH 是 NH3分解的产物,激发态 Ar*和 NH3分子的潘宁碰撞生成激发态中性粒子 NH(c 1Π)和 NH(A 3Π)。674.5 nm 处 N 原子谱线表明等离子体中产生了 N 活性原子,为大气压 Ar/NH3同轴介质阻挡放电等离子体合成ε-Fe3 N 磁性颗粒提供了可能。研究了各主要粒子谱线强度随 NH3流量和外加电压峰峰值的变化规律,研究结果表明:NH3流量相同时,随外加电压峰峰值升高,各粒子谱线强度均逐渐增强;外加电压峰峰值相同时,各谱线强度随 NH3流量增加先增强后减弱。外加电压峰峰值相同时,随 NH3流量增加,N 活性原子谱线强度先增强后减弱,NH3流量为20 mL·min-1时,N 活性原子谱线强度最强。NH3流量相同时,随外加电压峰峰值升高,N 活性原子谱线强度逐渐减小,主要是由于大气压 Ar/NH3 DBD 放电模式由多脉冲大气压辉光放电转变为丝状放电造成。多脉冲大气压辉光放电的微放电通道之间相互重叠,各个微放电之间相互影响,导致随外加电压峰峰值升高各谱线强度的增加速率较快。当外加电压峰峰值从4600 V 升高到6400 V 时,大气压 Ar/NH3 DBD 的放电模式由单脉冲 APGD 转变为二脉冲 APGD,属于均匀大气压介质阻挡放电,随外加电压峰峰值升高谱线强度的增加速率较快,利于合成ε-Fe3 N 磁性颗粒。  相似文献   

11.
大气压氩等离子体射流是一种非平衡等离子体,能够产生大量的电子、离子、激发态粒子和活性基团,在燃烧过程中这些粒子的参与能够大大降低化学反应的活化能,而等离子体射流的动力学效应影响粒子输运过程,使得等离子体射流具有一定程度的辅助燃烧效果。本实验通过发射光谱测量,分别识别出了在非预混和预混的甲烷燃烧过程参与燃烧的中间物种(OH,CH和C2),测量了这些自由基的发射光谱强度随着外部控制变量(放电电压、混合当量比)变化的规律。对于非预混情况,实验发现随着产生等离子体射流放电电压的增大,火焰总体长度变短,火焰面出现褶皱,火焰根部蓝色区域面积不断扩大,在22 kV时,大约占总火焰面积的1/2。对火焰根部的发射光谱测量结果表明,当电压达到16 kV时,发射光谱明显增强,而当电压进一步增大到22 kV时,这些自由基粒子的光谱强度却出现下降,这归因于在等离子体产生的电离风作用下管内气体流速增大,导致燃烧区发生移动远离喷口,使采集到的火焰根部区域变小造成的。另外,研究了在不同的燃料当量比下等离子体射流对预混气体助燃的过程,实验发现燃料当量比为2时,OH(A-X)的光谱发射强度随电压的增大而增强而CH(A-X)和C2(d)的发射强度在等离子体射流直接作用的情况下减小,反映了在氩等离子体射流参与助燃下燃烧变得更加充分了。实验发现等离子体射流产生大量的自由基以及等离子体电离风对混合过程的影响能够对燃烧过程产生明显影响。  相似文献   

12.
通过介质阻挡放电产生的等离子体可与燃料中的烃类分子发生碰撞裂解反应,将燃料分子裂解生成更容易起爆的氢气和小分子烃类,能有效改善液体燃料连续旋转爆震发动机的起爆性能。该研究在真空仓中开展体积介质阻挡放电的丝状放电光谱测试,分析了大气压氩气环境下体积介质阻挡放电的电子激发温度和电子密度随加载电压的变化规律。丝状放电的电子激发温度通过波尔兹曼斜率法计算,电子密度采用斯塔克展宽法计算。发现发射谱线均由氩原子4p-4s能级跃迁产生;各谱线强度随加载电压的提高均呈上升趋势,且与电压基本呈线性关系;对于大气压丝状放电,加载电压对电子激发温度和电子密度没有明显影响作用,加载电压12.5~14.5 kV范围内,电子激发温度稳定在3 400 K附近,电子密度在1025 m-3量级。  相似文献   

13.
OH*自由基是火焰中主要的激发态自由基之一,它所产生的化学发光可用于描述火焰的结构、拉伸率、氧燃当量比和热释放速率等特征信息,因此被广泛应用于火焰燃烧状态的在线诊断。以甲烷/氧气层流同轴射流扩散火焰作为研究对象,采用GRI-Mech 3.0机理结合OH*自由基生成和淬灭反应进行数值计算,对OH*自由基的二维分布特性进行研究,分析不同区域内OH*自由基的生成路径,并探讨不同氧燃当量比例和不同喷嘴出口尺寸对OH*自由基强度和分布特性的影响。模拟结果与实验研究基本吻合,表明计算模型能够准确描述火焰中OH*自由基的二维分布。结果表明:在甲烷/氧气层流同轴射流扩散火焰中,OH*自由基存在两种不同形态的分布区域,分别由反应CH+O2=OH*+CO和H+O+M=OH*+M生成;随着氧燃当量比提高,OH*自由基的分布区域逐渐向火焰下游扩张,根据其分布形态的变化可以对火焰燃烧状况进行判断;如果OH*自由基仅分布于火焰的上游区域且呈断开形态,则说明火焰处于贫氧燃烧状态。如果OH*分布呈环状形态,则说明火焰处于富氧燃烧状态;相同氧气流量条件下,缩小喷嘴出口的环隙尺寸有助于加强燃料和氧气的化学反应程度,从而使火焰中OH*自由基的摩尔分数显著提高,增强OH*化学发光的辐射强度,提高火焰光谱诊断的准确性。  相似文献   

14.
火焰的辐射光谱可为燃烧诊断提供诸多信息,因此目前对简单的气态火焰自由基辐射特性已进行了大量研究,而关于非均相火焰的辐射光谱特性研究则相对较少。采用改进的热氧喷嘴技术在敞开空间下直接点燃水煤浆,并利用光纤光谱仪和紫外成像系统,着重对甲烷和水煤浆火焰的辐射光谱及OH*的二维分布特性进行研究。结果表明:与甲烷火焰的光谱辐射相比,水煤浆火焰不仅存在OH*,CH*和C2*特征辐射,还产生了Na*,Li*,K*和H*的发射谱线,并出现了连续的黑体辐射,这些光谱辐射特征可作为水煤浆气化或燃烧的标志,也可作为水煤浆是否点燃的判据;通入水煤浆后,OH*强度明显下降,而CH*和C2*强度增大。对比甲烷火焰OH*二维分布,水煤浆火焰OH*峰值强度明显下降,化学反应区域面积显著减小;沿着火焰传播方向,甲烷和水煤浆火焰轴向的OH*强度均呈先增大后减小的趋势;甲烷火焰径向的OH*在反应核心区出现了双峰形态分布,而水煤浆火焰OH*径向始终呈单峰分布。随着氧碳当量比增大,水煤浆火焰OH*的存在范围扩大,说明氧气的增加促进了OH*的产生;随水煤浆流量提高,OH*的反应核心区域缩小,峰值强度明显下降,CH*,C2*,Na*,Li*,K*和H*的强度显著增强,连续的黑体辐射强度也明显增大,这些辐射光谱的变化可用于表征操作负荷的变化。  相似文献   

15.
周倩  于淼  张秀玲 《光散射学报》2013,25(2):209-213
采用自行设计的介质阻挡放电反应器,以氩气和离子液体为放电介质,实现大气压下稳定的气(等离子体)-液(离子液体)等离子体放电,并运用光谱法在线诊断氩等离子体光谱。考察了不同咪唑基离子液体以及放电参数对大气压氩气介质阻挡放电光谱的影响。结果表明,离子液体的引入降低了氩气放电光谱的强度,谱峰强度与离子液体阳离子咪唑环上的碳链长度有关,且随碳链长度增加,谱峰强度降低;同时阴离子结构对称性低的离子液体,谱峰强度较低。加入离子液体后氩谱随放电电压及放电频率变化均呈现峰值变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号