首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
以LiOH.H2O,Ni(NO3)2,6H2O,Co(NO3)2.6H2O,NH3.H2O为原料,在不同条件下以类凝胶法制备层状化合物LiNixCo1-xO2,并以此作正极材料进行电化学测试,结果表明,首次充电比容量达192mAh/g,首次放电比容量达140mAh/g,循环22次后其放电比容量保持在119mAh/g。  相似文献   

2.
金属并联电解制备LiCo_xNi_(1-x)O_2正极材料   总被引:1,自引:0,他引:1  
应用钴、镍金属并联电解法制备锂离子电池正极材料.电解反应时,调节流过钴、镍电极上的电流比值及控制合适的电流密度,可生成均匀的CoxNi1-x(OH)2前驱体.研究表明,该法简单且无污染.合成的LiCo0.3Ni0.7O2正极材料充放电的容量较高,循环稳定性也较好,其初始放电容量为163mAh/g,经过50次充放电循环后放电容量仍可保持140mAh/g.  相似文献   

3.
溶胶-凝胶-微波法制备阴阳离子同时掺杂型LixMn2OyFz   总被引:6,自引:0,他引:6  
以LNO3、L iF和MnNO3为原料,通过控制n(L i)/n(Mn)和掺F量,运用溶胶-凝胶-微波法在750℃下合成阴阳离子复合掺杂型L ixMn2OyFy电极材料。XRD和FTIR实验表明,适量的阴阳离子复合掺杂不改变材料的立方尖晶石结构;掺杂适量的锂可以改善材料的循环性能,而氟不但可以起到保持材料的比容量而且可以显著降低材料在高温条件使用时的容量损失;充放电和循环伏安实验均证明,L i1.06Mn2O4.034F0.10是较理想的电极材料。室温条件下,L i1.06Mn2O4.034F0.10首次放电比容量达到119mAh/g,循环20次后比容量仍保持在115mAh/g,在55℃使用时,材料20次的比容量损失率为5.6%  相似文献   

4.
负极材料Li_4Ti_5O_(12)的蔗糖改性研究   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖晶石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1 mAh/g,在2C和3C倍率下首次放电比容量仍达143.8 mAh/g和129.4 mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

5.
以LiOH·H2O、Ni2O3、Co2O3、TiO2和Mg(OH)2为原料,应用固相反应法合成Co Ti Mg共掺杂的LiNiO2化合物LiNi0. 85Co0. 10 (TiMg)0. 025O2;TG DTA、XRD、SEM和电化学测试表明,该材料首次放电容量达182. 7mAh/g(3. 0~4. 3V, 18mA/g), 10次循环之后,容量还有 175. 5mAh/g,容量保持率为 96. 2%;与未掺杂的LiNiO2相比,该材料显示出良好的循环性能,是一种很有应用前景的锂电池正极材料.  相似文献   

6.
王茹英  邱天  毛冲  杨文胜 《电化学》2012,(4):332-336
在恒定pH值下将层状钴铝双羟基复合金属氧化物(CoAl-LDH)均匀包覆在球状Ni(OH)2表面,与LiOH.H2O混合均匀后,经高温煅烧制得钴铝酸锂包覆镍酸锂0.08LiCo0.75Al0.25O2-0.92LiNiO2正极材料.电化学测试表明,0.08LiCo0.75Al0.25O2-0.92LiNiO2正极比容量高,具有良好的倍率性能和循环寿命,其0.1C放电比容量为211 mAh·g-1,0.5C放电比容量为195.6 mAh·g-1,3C放电比容量为161 mAh·g-1,0.5C 30周期循环后容量保持率为93.2%,明显优于LiNiO2和钴酸锂包覆镍酸锂0.08LiCoO2-0.92LiNiO2正极.  相似文献   

7.
锂离子电池阴极材料Li1+xMn2O4的水热合成及表征   总被引:10,自引:1,他引:9  
刘兴泉  李庆  于作龙 《合成化学》1999,7(4):382-388
以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。结果表明,在240℃水热晶化72h所得样品为棕红色,主要以γ-Mn2O3和层状LiMnO2形式存在。当Li/Mn摩尔比为1∶1时,其首次充电比容量达到205.35mAh/g,首次放电比容量达到178.80mAh/g。样品经650℃空气中焙烧6h后转变成以Li1+xMn2O4尖晶石型形式存在,其首次放电比容量下降到110mAh/g~120mAh/g。  相似文献   

8.
高比能LiFePO_4的制备及性能研究   总被引:1,自引:0,他引:1  
应用液相沉淀法-固相烧结法制备高密度的LiFePO4/C及纯相LiFePO4.X射线衍射、扫描电镜、傅立叶红外光谱仪、电化学性能测试表明:该样品具有单一的橄榄石结构和3.4 V左右的放电平台,掺碳的LiFe-PO4具有更优良的性能,粒度较小粒径分布均匀,振实密度达1.46 g/cm3,0.1C首次放电比容量为144.6mAh/g,循环20次后容量保持率为93.2%,1C倍率首次放电比容量为133.5 mAh/g,循环20次后容量下降8.76%.  相似文献   

9.
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖品石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1mAh/g,在2C和3C倍率下首次放电比容量仍达143.8mAh/g和129.4mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

10.
姚煜  余爱水 《电化学》2012,(4):314-317
将竹碳进行球磨和硫酸处理,比较颗粒粒径和硫酸处理时间对竹碳电极电化学性能的影响.结果表明,平均粒径5μm的竹碳电极具有较好的充放电效率,而硫酸处理可有效提高材料的放电容量.硫酸处理18 h的竹碳电极首次放电比容量可达328.2 mAh·g-1,50次循环后其比容量仍保持302.3 mAh·g-1,显示出优异的循环寿命.  相似文献   

11.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

12.
以共沉淀法合成的前驱体Ni_(1/3)Co_(2/3-x)Al_x(OH)_2与低共熔锂盐0.38LiOH·H_2O-0.62LiNO_3制备了锂离子电池正极材料LiNi_(1/3)Co_(2/3-x)Al_xO_2(x=1/12,1/3,1/2,7/12).采用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对其结构、形貌和电化学性质进行表征.结果表明,LiNi_(1/3)Co_(2/3-x)Al_xO_2在1/12≤x≤1/3范围内可以保持单一的六方层状a-NaFeO_2结构,当A1掺杂量(x)高于1/3时,会出现杂相.其中,LiNi_(1/3)Co_(1/3)Al_(1/3)O_2结晶程度最高,阳离子混排效应最小,并且颗粒小而均匀,振实密度可以达到2.88 g·cm~(-3),首次放电容量为151.5 mAh·g~(-1),循环50次后放电容量保持在91.4%,在1C和2C倍率下放电容量仍可达到133.7和120.9 mAh·g~(-1)  相似文献   

13.
锂离子电池正极材料LiV3-xMnxO8的水热合成与性能   总被引:1,自引:0,他引:1  
采用水热法制备了Mn掺杂改性的锂二次电池钒基层状正极材料LiV3-xMnxO8(x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10). 用X射线衍射(XRD)和扫描电镜(SEM)对材料的晶体结构和形貌进行表征, 并以50 mA·g-1的电流对材料进行恒流充放电测试. 研究了Mn掺杂对材料晶体结构和电化学性能的影响. 结果表明, Mn掺杂能够明显改善材料的电化学性能. 在掺杂改性的LiV3-xMnxO8材料中, LiV2.94Mn0.06O8的初始容量最高, 达到295 mAh·g-1. 当掺杂量控制在0.01≤x≤0.08范围内时, LiV3-xMnxO8材料均具有较好的循环性能和充放电可逆性, 经20次循环后放电比容量都保持在120 mAh·g-1以上, 40次循环后都保持在100 mAh·g-1以上, 且材料的充放电效率始终维持在93%以上.  相似文献   

14.
以镍钴氢氧化物为原料,采用异丙醇铝水解法合成Ni0.88Co0.07Al0.05(OH)2,将前驱体与锂源充分混合,通过3种烧结条件制备出球形LiNi0.88Co0.07Al0.05O2正极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。研究表明,在500℃下保温3 h、700℃下保温14 h的条件下合成的LiNi0.88Co0.07Al0.05O2具有良好的综合电化学性能,0.2C放电比容量达192.2 mAh·g^-1,首次充放电效率为81.6%,1C放电比容量为190.7 mAh·g^-1,100周后放电比容量为141.1 mAh·g^-1,容量保持率达到73.4%。  相似文献   

15.
纳米钴基氧化物锂离子电池负极材料的研究   总被引:10,自引:0,他引:10  
黄峰  袁正勇  周运鸿  孙聚堂 《电化学》2002,8(4):397-403
采用流变相法合成Co3 O4 ,CoB1.3 6 O2 .8,CoB0 .5Al0 .1O1.5样品 ,并研究其作为锂离子电池负极材料的电化学性能 .当电池在 0 .0 1~ 3.0 0V的电压范围之间循环时 ,Li/Co3 O4 电池表现出最好的充放电性能 :循环 30周后 ,可逆比容量仍能保持为初始比容量 (931mAh/g)的 95 % .掺杂了B ,Al材料 ,其可逆比容量与未掺杂的相比明显降低 ,而且第 1周可逆容量随掺杂的B、Al量的增加而减少 .通过异位XRD方法研究了不同充放电态Co3 O4 电极材料结构的变化 .结果表明 ,Co3 O4 电极在充放电过程中与Li的反应机理不同于传统的过渡金属与Li的反应机理 ,即非Li+ 的嵌入 /脱出或合金的形成 ,而是Co3 O4 的可逆还原氧化以及Li2 O的可逆形成与分解机理  相似文献   

16.
LiNi_(0.8)Co_(0.2)O_2的络合法合成及其电化学性能研究   总被引:6,自引:0,他引:6  
采用络合法制备了锂离子电池的活性正极材料LiNi0.8Co0.2O2粉体,该合成材料结晶良好,层状结构发育完善.电池充放电测试表明,作为锂离子电池正极,其电化学性能与LiNi0.8Co0.2O2粉体的合成温度有关,其中以900℃下合成得到的材料性能最优:第1次放电比容量高达142mAh/g,循环30次后可逆比容量仍高达122mAh/g,容量损失为14.5%.文中对容量退化的原因进行了分析.  相似文献   

17.
褚道葆  李艳  宋奇  周莹 《物理化学学报》2011,27(8):1863-1867
以富含植物蛋白的豆浆作为碳源, 以FePO4·4H2O和LiOH·H2O为原料, 采用流变相方法合成了锂离子电池正极材料LiFePO4/C. X射线衍射(XRD)和扫描电子显微镜(SEM)的表征结果显示, 样品具有良好的结晶性能, 平均粒径约200 nm, 颗粒表面有均匀网络状的碳包覆. 充放电循环研究结果表明: LiFePO4/C具有稳定的电化学循环性能, LiFePO4/C正极材料在0.1C倍率下首次放电比容量达到156 mAh·g-1, 首次充放电效率达到98.7%; 循环40次后, 放电比容量为149 mAh·g-1, 电池容量保持率在95%以上, 1C倍率下首次放电比容量达到134.7 mAh·g-1, 显示出较高的电化学容量和优良的循环稳定性.  相似文献   

18.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

19.
由溶胶凝胶法合成的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2在水溶液体系中具有优异的高倍率充放电性能,放电时能够输出极高功率密度.XRD表征证明合成的LiNi1/3Co1/3Mn1/3O2材料具有层状α-NaFeO2结构,SEM形貌显示材料的粒径约为500nm,恒电流充放电测试表明LiNi1/3Co1/3Mn1/3O2材料在pH12的2mol·L-1LiNO3溶液中,以2C(0.36A/g)倍率充放时,比容量达到了147mAh/g.如以80C(14.4A/g)、150C(27A/g)和220C(39.6A/g)的倍率充放,材料的比容量仍可达到64mAh/g、33mAh/g和16mAh/g,而全电池的功率密度分别达到2574W/kg、3925W/kg、4967W/kg.其中80C倍率充放,经1000周循环后,容量保持率为90.9%.  相似文献   

20.
Li_3PO_4包覆LiMn_2O_4正极材料的结构表征和电化学性能   总被引:1,自引:0,他引:1  
李敏  李荣华  王文继 《化学研究》2007,18(4):98-101
采用共沉淀法在尖晶石LiMn2O4颗粒表面包覆Li3PO4.XRD、SEM研究结果表明,包覆后的材料仍为尖晶石结构,粒径均匀.电化学性能测试表明,Li3PO4包覆层的存在,减少了正极材料与电解液的直接接触,抑制了高温下电解液对LiMn2O4材料的侵蚀,从而有效改善了高温下材料的循环性能.在40℃时,包覆样品的比容量衰减率都低于未包覆样品,其中包覆1%Li3PO4的样品的初始比容量为110.4mAh/g,50次循环后比容量为84.1mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号