首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖品石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1mAh/g,在2C和3C倍率下首次放电比容量仍达143.8mAh/g和129.4mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

2.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

3.
以乙酰丙酮(ACAC)螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5O12/TiN材料.考察了TiN膜对尖晶石型Li4Ti5O12锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5O12/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0 mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5O12锂离子电池负极材料的电化学性能.  相似文献   

4.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

5.
应用改进固相合成法制备亚微米Li4Ti5O12锂离子电池材料.X射线衍射(XRD)、扫描电镜(SEM)和激光粒度分析分别显示:物相单一且粒度均匀,D50为0.886μm,属于亚微米级材料.合适的粒度和分布使得该材料展示出优良的电化学性能,以其装配的半电池中,0.1C首次放电容量为165 mAh/g,5C时放电容量可达107 mAh/g,10C时仍可达到54 mAh/g.  相似文献   

6.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

7.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

8.
以纳米级锐钛矿型二氧化钛(TiO2)和氢氧化锂(LiOH)为原料,利用水热法合成了尖晶石型Li4Ti5O12材料,并研究了LiOH浓度、水热反应时间及热处理温度对Li4Ti5O12样品结构和电化学性能的影响,分析了Li4Ti5O12的形成过程.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)分析样品材料结构,观察材料形貌.结果表明,LiOH浓度0.2 mol.L-1、水热反应时间12 h及煅烧温度700℃可得到纯相尖晶石型Li4Ti5O12,该样品1C倍率放电比容量为146.3 mAh.g-1,40C高倍率其放电比容量仍有101.3 mAh.g-1.  相似文献   

9.
主要合成了具有尖晶石结构的Li4Ti5O12亚微米球电极材料,并研究了其作为锂离子电池负极材料的电化学性能.材料的制备分为三个步骤:TiCl4水解得到金红石相的TiO2,然后将得到的TiO2与LiOH进行水热反应得到中间相LiTi2O4+δ,最后将中间相高温煅烧得到尖晶石结构的Li4Ti5O12.采用XRD、SEM和TEM等手段对材料的结构和形貌进行表征.结果表明,尖晶石相的Li4Ti5O12负极材料具有分级结构,是由20~30nm的小颗粒堆积成约为200~300nm的亚微米球.将制备的Li4Ti5O12材料进行恒电流充放电测试表明,材料具有优异的倍率放电性能和较好的循环可逆性;在1C充放电时,首次放电比容量达到174.3mAh/g,在第5~50次循环过程中仅有微小的不可逆容量损失.采用循环伏安法测得Li+的扩散系数为1.03×10-7cm2/s.研究表明合成的Li4Ti5O12亚微米球在高效可充电锂离子电池中具有良好的应用前景.  相似文献   

10.
本文采用球磨微波法合成锂离子电池正极材料Li3V2(PO4)3/C,并研究了微波辐射时间对样品电化学性能的影响.结果表明,640 W微波辐射18 min合成的材料,结晶度高,粒径小而均匀.该电极5C倍率下首次放电比容量达101.3 mAh·g-1,300周期循环,其放电比容量仍保持100.8 mAh·g-1,展示出良好的应用前景.  相似文献   

11.
以商业微米级锰酸锂(LiMn2O4)为正极,钛酸锂(Li4Ti5O12)为负极,分别与商业活性炭(AC)复合,组装成软包装电池电容样品并进行电化学测试。测试结果表明:当样品正负极均复合AC时,其电化学性能要优于只有正极复合AC和未复合AC的样品。其中,正负极活性炭复合比例为5 wt.%,负极与正极的理论容量比(N/P)为1.01时,电池电容样品拥有良好的倍率性能,且其在0.5 C时的放电比容量为56.4 mAh/g,5 C时的容量保持率为0.5 C的72.2%。此外,与未复合AC的样品相比,单体在5 C倍率下经2000次循环后的容量保持率仍有77.5%,远高于前者的30.4%。  相似文献   

12.
蒋娜 《应用化学》2009,26(7):835-839
以葡萄糖为碳源,采用固相法制备了Li4Ti5O12/C复合材料。探讨了不同反应气氛(N2/O2)对材料物理性质及电化学性能的影响,并通过XRD、BET、电导率、电性能等测试手段对其进行表征。结果表明:氮气气氛中烧结的样品粒度、比表面积、电导率均比空气中烧结样品大。氮气中烧结样品的倍率性能优于空气中 烧结样品,在以0.1C倍率充放电时,首次放电比容量为166.8mAh/g。两样品1C时,经过50次循环容量保持率差别不大。  相似文献   

13.
采用水合氧化钛溶胶为原料, 多孔炭为模板剂, 设计制备了一种新型准纳米晶锂钛复合氧化物, 并用SEM、XRD、恒流充放电及交流阻抗测试表征了材料的形貌、结构和电化学性能. 结果表明, 该氧化物晶粒尺寸约200 nm, 为典型的尖晶石Li4Ti5O12结构. 在0.5C(1C=0.2 mA·cm-2)电流条件下的首次嵌脱锂效率为99.8%, 嵌脱锂电位平坦, 可逆容量为117 mAh·g-1; 当电流从0.5C增至5C时, 其可逆嵌锂容量仍在100 mAh·g-1以上, 容量保持率大于86%, 倍率充放电性能优异. 交流阻抗测试结果表明, 模板剂多孔炭的应用使合成的尖晶石Li4Ti5O12具有更佳的导电性能, 且多孔特征明显.  相似文献   

14.
闫慧  张欢  张鼎  朱智  其鲁 《物理化学学报》2011,27(9):2118-2122
以球形TiO2和LiOH溶液为反应物,通过水热法合成了尖晶石型Li4Ti5O12,并使用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)和激光粒度分布(PSD)对其结构、形貌和电化学性能进行了表征.结果表明:通过该法得到的产品颗粒大小均匀,粒度分布狭窄,结构与标准Li4Ti5O12谱图一致.实验选定温度下所得的Li4Ti5O12均表现出良好的电化学性能.其中,800°C热处理所得样品的电化学性能最好,室温下,以35mA·g-1的电流密度进行充放电,其可逆容量达到162mAh·g-1,同时这种材料也表现出良好的倍率性能,即使在720mA·g-1的电流密度条件下进行充放电,其可逆容量仍可达到124mAh·g-1.  相似文献   

15.
Journal of Solid State Electrochemistry - Submicron-sized Li4Ti5O12/C (LTO/C) composites were successfully synthesized by using one-step and two-step route, in which sucrose was used as carbon...  相似文献   

16.
锂离子电池新型快充负极材料Li4Ti5O12的改性研究   总被引:2,自引:0,他引:2  
采用传统固相法制备尖晶石型Li4Ti5O12, 在前驱物中掺杂聚合物裂解碳材料聚并苯(PAS). 经四探针测试仪测量, 电导率提高9个数量级. 复合物的电化学性能测试结果表明, 其循环性和高倍率性能得到了明显改善.  相似文献   

17.
A detailed structural and electrochemical study of the ion exchanged Li(2)Ti(6)O(13) titanate as a new anode for Li-ion batteries is presented. Subtle structural differences between the parent Na(2)Ti(6)O(13), where Na is in an eightfold coordinated site, and the Li-derivative, where Li is fourfold coordinated, determine important differences in the electrochemical behaviour. While the Li insertion in Na(2)Ti(6)O(13) proceeds reversibly the reaction of lithium with Li(2)Ti(6)O(13) is accompanied by an irreversible phase transformation after the first discharge. Interestingly, this new phase undergoes reversible Li insertion reaction developing a capacity of 170 mAh g(-1) at an average voltage of 1.7 V vs. Li(+)/Li. Compared with other titanates this result is promising to develop a new anode material for lithium ion rechargeable batteries. Neutron powder diffraction revealed that Na in Na(2)Ti(6)O(13) and Li in Li(2)Ti(6)O(13) obtained by Na/Li ion exchange at 325 °C occupy different tunnel sites within the basically same (Ti(6)O(13))(2-) framework. On the other hand, electrochemical performance of Li(2)Ti(6)O(13) itself and the phase released after the first full discharge is strongly affected by the synthesis temperature. For example, heating Li(2)Ti(6)O(13) at 350 °C produces a drastic decrease of the reversible capacity of the phase obtained after full discharge, from 170 mAh g(-1) to ca. 90 mAh g(-1). This latter value has been reported for Li(2)Ti(6)O(13) prepared by ion exchange at higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号