首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the evolution of zinc based high purity phases with novel morphologies such as Zn3N2 hollow structures, ZnO nanowires and nanopowders, as well as metallic Zn layered hexagonal microparticles at progressively increased reaction temperature of 600 °C, 700 °C, 800 °C under NH3 gas atmosphere using Zn powder precursor and keeping all other experimental parameters unchanged. Growth mechanism for Zn3N2 obtained by nitridation, ZnO by oxidation and Zn microparticles via thermal evaporation & condensation process are discussed briefly. The as-synthesized products were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). Photoluminescence (PL) studies have revealed very interesting and infrequently observed emission bands at 378 and 661 nm for Zn3N2, 359 and 396 nm for ZnO as well as 389 nm for Zn polyhedral microparticles.  相似文献   

2.
Synthesis of ultrawide ZnO nanosheets   总被引:2,自引:0,他引:2  
A new type of semiconducting nanostructure has been synthesized. Ultrawide ZnO nanosheets were fabricated by oxygen assisted carbothermal reduction process. Our study on the growth mechanism of these novel nanostructures indicates that they are generated by a “1D branching and 2D filling” process which can be easily controlled by the supersaturation state of reactant vapors. The ZnO nanosheets in this work are single-crystalline, nanostructured in their thickness directions, but large enough to see with the human naked eye and to handle with TEM tweezers.  相似文献   

3.
A facile synthesis route is presented to achieve dimension-tunable ZnO nanostructures by the design of zinc hydroxide precursors under the surfactant-free condition. From three types of zinc hydroxide precursors, namely, crystalline Zn(OH)(NO3)(H2O) nanobelts, amorphous zinc hydroxides microparticles and soluble Zn(OH)2-4\mathrm{Zn}(\mathrm{OH})^{2-}_{4} species, the porous ZnO nanosheets, ZnO nanoparticles and ZnO nanowires can be achieved, respectively. The porous ZnO nanosheets exhibit large polar surface area. Thermal analysis indicates that the crystalline Zn(OH)(NO3)(H2O) nanobelts were converted to the porous ZnO nanosheets by in situ lattice reconstruction, which was attributed to the unique fibrous structure of Zn(OH)(NO3)(H2O) nanobelts. The as-prepared dimension-tunable ZnO nanostructures have potential applications in solar cells, photocatalysis, novel chemical and biological sensors, etc.  相似文献   

4.
We report the growth mechanism and structural properties of micrometer sized ZnO cages which were synthesized directly from Zn vapor deposition and oxidation. The ZnO microcages exhibit a hexagonal or spherical shape with partly or completely open surfaces and hollow interiors. The growth process of the microcages includes the deposition of Zn polyhedral particles, top face breaking of the Zn particles and Zn sublimation, and subsequent reaction to ZnO. By controlling the various growth stages, we obtained information on the growth mechanism of the ZnO cages, which appears to be different from a mechanism reported previously. The chemical composition and crystalline structure were studied using energy dispersive X-ray spectroscopy and transmission electron microscopy, respectively. The room-temperature photoluminescence spectrum indicates a large quantity of oxygen-vacancy related defects within the wall of the ZnO cages.  相似文献   

5.
Large scale flower-like ZnO nanosheets have been synthesized on Zinc foil by a simple hydrothermal method. Their morphology and microstructures were characterized and analyzed by X-ray spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM). The as-synthesized flower-like nanosheets are hexagonal phase single crystal with 200-300 nm in width, 50 nm in thickness. The growth process follows the liquid phase epitaxial growth mechanism. In this approach, the ZnO buffer is used as substrate for the growth of flower-like ZnO nanosheets. The growth direction of the nanosheets is the preferential [0 0 0 1] growth direction of ZnO. The photoluminescence spectrum of the sample exhibits only a sharp and strong UV emission centered at 386 nm, which indicates that the flower-like ZnO nanosheets on Zn foil are of good optical property.  相似文献   

6.
In this paper, 3D flower-like Au-ZnO microstructures with controlled morphology and dimensions were synthesized by a facile one-step aqueous solution route at room temperature, and the photocatalytic properties of these structures were investigated. The as-prepared flower-like Au-ZnO structures with a diameter of about 3 μm consisted of many ZnO nanosheets which interacted with each other. These nanosheets, which were successfully decorated by Au NPs, showed an average thickness of 10 nm and a single-crystalline structure with {2-1-10} planar surfaces. The growth process of Au-ZnO structures and the effects of trisodium citrate on the nucleation and growth of ZnO were investigated. The formation of Au NPs in this experiment was discussed too. The Au-ZnO structures showed higher photocatalytic activity than that of pure ZnO.  相似文献   

7.
借助气相输运凝结方法,采用AgxAu1-x合金作为催化剂,在较低的650 oC下成功制备出氧化锌纳米双晶薄片. 高分辨结构表征证实该薄片中存在{10-13}孪晶界面. 系列地对比实验表明高的锌蒸汽浓度和AgxAu1-x合金催化作用是孪晶成核的必要条件. 还发现衬底上制备出的氧化锌纳米孪晶薄片的密度可以通过合金催化剂中的银金成分比例加以调节.  相似文献   

8.
The electronic and magnetic properties of N-doped ZnO nanosheets are investigated by density functional theory using local spin density approximation. The results show that in an isolated N-doped ZnO nanosheet, there is a clear spontaneous polarization of N 2p state with a magnetic moment 1.0 μB/N. We also find that the doped nitrogen atoms in ZnO nanosheets have a clustering tendency with ferromagnetic coupling between them, and thus a high room-temperature ferromagnetic nature is expected. The ferromagnetic coupling in N-doped ZnO nanosheets can be attributed to the hole-mediated double-exchange mechanism through strong p–d interaction between nitrogen and zinc atoms.  相似文献   

9.
Transparent two-dimensional ultralong and ultrabroad single crystal zinc oxide (ZnO) nanosheets were directly synthesized by a simple solid vapor deposition process under lead oxide (PbO) atmosphere. The nanosheets are well grown single crystals with thickness of about 50-70 nm, breadth of 50-100 μm and length of 4-6 mm. The growth mode of the ultrabroad nanosheets displays a unique aspect that (001) planes form the narrowest facets of the nanosheets, which is completely different from other belt-like nanostructures of ZnO. Control experiments show that PbO play an important role in the vapor-solid growth process of ZnO nanosheets.  相似文献   

10.
利用拉曼光谱方法,对柠檬酸钠辅助水热合成纳米结构多孔ZnO微球的机理进行了研究。样品的拉曼光谱特征显示,多孔ZnO微球中存在Zn-柠檬酸配合物;分析表明反应溶液中柠檬酸钠水解产生的柠檬酸根与Zn2+结合形成Zn-柠檬酸配合物,该配合物化学吸附在Zn(OH)2晶核的(204)和(503)晶面,使Zn(OH)2晶核择优生长形成纳米薄片状结构;水热过程中Zn(OH)2微晶团聚形成纳米片状结构多孔Zn(OH)2微球并以沉淀析出。研究发现吸附在薄片表面的Zn-柠檬酸配合物提高了Zn(OH)2微晶的热稳定性,使得Zn(OH)2的分解温度高于200 ℃,加热到300 ℃后Zn(OH)2完全分解获得纳米结构多孔ZnO微球。  相似文献   

11.
ZnO nanorods were fabricated by ultrasonic treatment before and after a hydrothermal process. The morphology and structure of the nanorods were individually characterized by scanning electron microscopy and X-ray diffraction. The results show that before the hydrothermal process, fore-ultrasonic treatment can directly gain ZnO nanorods which mainly experienced four conversion stages from initial bulk Zn(OH)2, a coexisting phase of bulk Zn(OH)2 with ZnO nanoslices, ZnO nanoslices with flower-like ZnO nanorods and finally to purely flower-like ZnO nanorods. After the hydrothermal process, the post-ultrasonic treatment mainly influences the aggregation degree of the ZnO nanorods. The formation mechanism of ultrasonic treatment on ZnO nanorods is also discussed.  相似文献   

12.
Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO3)2, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm−2, a fill factor of 0.26, and a power conversion efficiency of 0.14%.  相似文献   

13.
采用热蒸发法在ZnO缓冲层覆盖着Si衬底上合成了2D叶状的Zn晶枝结构,Zn的晶枝长度约为几十微米,厚度约为200nm,随后Zn晶枝在O2的气氛下热处理,在晶枝表面获得纤细、均匀的ZnO纳米线。晶枝按照无催化、自组装、汽相生长模式生长,晶枝最快生长方向是沿着载气气流的方向释放凝固潜热,XRD分析结果结果显示了Zn纳米线具有六角纤锌矿结构,Zn/ZnO的发光谱显示,在380nm处有一弱的UV近带边发射和中心在505nm处的强绿光发射,绿光发射归因于施主/受主对之间的辐射跃迁。  相似文献   

14.
The effect of thin ZnO coatings grown on Zn films on further oxidation and thermal stability of Zn films deposited on Mo(110) substrate was in situ investigated under ultrahigh vacuum by photoelectron spectrometries and low-energy electron diffraction. The results indicated that ZnO layers formed by oxidizing Zn films had at least a thickness of 3–5 monolayers. Further oxidation of Zn films was confined by as-formed ZnO coatings due to a surface passivation. It was of advantage to explain the difficulty in growing low oxygen-deficient ZnO films. The surface ZnO coatings strongly enhanced the thermal stability of Zn films, which was useful for understanding the underlying application of Zn/ZnO materials, such as Zn/ZnO nanocables with Zn core and ZnO shell.  相似文献   

15.
Catalyst-free, low-temperature (430 °C), high-density, well-aligned, single-crystalline zinc oxide (ZnO) microprism (ZMP) arrays have been synthesized over the entire c-ZnO/poly-Zn-coated Si substrates by simple thermal evaporation of Zn powder. Specially, the microprisms obtained possess hexagonal umbrella-like tips on which vertical thin ZnO nanowires grow. The growth mechanism of a three-stage thermodynamic process was discussed. Photoluminescence spectra show a strong ultraviolet (UV) emission enhancement of the ZMPs after H+ (hydrogen ions) implantation. This kind of special ZnO microstructure may find potential applications in field emission, UV laser emission devices, multifunctional microdevices and highly integrated multichannel nano-optoelectronic devices.  相似文献   

16.
Zinc oxide (ZnO) thin films were deposited on LiNbO3 (LN) single crystals with 200 nm thicknesses by three different ways, where coating of zinc (Zn) film was followed by thermal oxidation for four, two, and one steps with 50, 100, and 200 nm thicknesses repeatedly. Sample, which was produced at 4-step of deposition and oxidation of Zn layer, showed high transmittance and low structural defect due to a lower photoluminescence intensity and Urbach energy. Average grain size in X-ray diffraction (XRD), scanning electron microscopy (SEM) micrograph, and atomic force microscopy (AFM) images for multilayer of ZnO was lower than monolayer of ZnO thin films. Applying multilayer coating technique leads to decrease of surface roughness and scattering on light on surface and fabrication of LiNbO3 waveguides with lower optical loss.  相似文献   

17.
We report the structural and morphological properties of well-aligned ZnO nanowires grown at 750 °C on Au-deposited and annealed (100)Si substrates using carbo-thermal evaporation. As-grown nanowires are made of wurtzite ZnO, have cylindrical shape and carry droplet-like nanoparticles (NPs) at their tips, as expected for vapour–liquid–solid (VLS) growth. Grazing incidence X-ray diffraction measurements demonstrate that the NPs are made of pure fcc Au. No secondary Au/Zn alloy phases were detected. Bragg diffraction patterns confirmed that the nanowires were grown with their crystal c-axes parallel to the [100] direction of Si (i.e. normal to the substrate surface), while Au NPs are mostly (111)-oriented. The diameter distribution of ZnO nanowires mimics that of the Au NPs at their tips. A quantitative study of the nanostructure size distribution after sequential annealing and growth steps evidences the occurrence of three nanoscale processes: (i) Ostwald ripening and/or coalescence of Au NPs before nanowire nucleation, (ii) Au-catalysed VLS nucleation and axial growth of ZnO nanowires and (iii) radial growth of nanowires by a vapour–solid process. These processes originate the NP and nanowire size evolution during the experiments. The present findings are interpreted in terms of Zn vapour pressure changes during carbo-thermal evaporation. PACS 61.46.+w; 68.65.-k; 81.16.Dn  相似文献   

18.
秦莉  张喜田  梁瑶  张锷  高红  张治国 《物理学报》2006,55(6):3119-3123
利用化学气相沉积(CVD)的方法通过热氧化高纯锌粉在硅衬底上得到氧化锌微米花. X射线衍射(XRD)结果表明,其具有六角纤锌矿晶体结构.场发射扫描电子显微镜(FE-SEM)图像表明,合成的样品是由很多长且直的ZnO亚微米棒组成的微米花, 具有六角棱柱端面,棒的长度在30μm到50μm之间.在背向共振拉曼散射光谱测量中,观测到ZnO A1(LO)的五阶声子紫外共振拉曼散射,表明样品具有较高的晶体质量.在变温光致发光谱测量中,观察到明显的中性受主束缚激子(A0X)的 关键词: ZnO微米花 光致发光 共振拉曼 “负热淬灭”效应  相似文献   

19.
The growth mechanism of single-crystal ZnO nanorods synthesized by the method of polymer complexing with zinc salts is investigated. The annealing temperature is controlled at about the decomposition temperature of dihydrate zinc acetate (Zn(O2CCH3)2·2H2O) of 573 K. By changing the annealing time, the ZnO nanostructures can be modified from nanoparticles to nanorods. As a result, the formation of single-crystal ZnO nanorods can be observed. Through investigating the Fourier transform infrared spectra of (a) polyvinyl pyrrolidone (PVP), (b) Zn(O2CCH3)2·2H2O and (c) the mixture of PVP and Zn(O2CCH3)2(H2O)2, the interaction between PVP and Zn(O2CCH3)2·2H2O can be observed. PVP plays an important role in the growth of the single-crystal ZnO nanorods. We analyze the growth process of ZnO nanorods by observing their TEM images at different moments. Consequently, our results indicate that the single-crystal ZnO nanorods were formed by self-assembling the ZnO nanoparticles. PACS 61.46.Hk; 61.46.Df; 78.30.-j; 81.07.-b; 81.16.Be  相似文献   

20.
Metallic Zn films were deposited on glass substrates by electron-beam evaporation. ZnO films were synthesized by thermal oxidation of Zn metallic films in air. At the annealing temperature of 550 °C, ZnO nanowires appeared on the surface, which mainly result from the decrease of oxidation rate. A ZnO ultraviolet photodetector was fabricated based on a metal-semiconductor-metal planar structure. The detector showed a large UV photoresponse with an increase of two orders of magnitude. It is concluded that promising UV detectors can be obtained on ZnO films by thermal oxidation of Zn metallic films. The ways of performing spectral response measurements for polycrystalline ZnO films are also discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号