首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3C2TX/Pt–Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx) to form a sarcosine biosensor (GCE/Ti3C2TX/Pt–Pd/SOx). The prominent electrocatalytic activity and biocompatibility of Ti3C2TX/Pt–Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2. Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3C2TX/Pt–Pd will provide a meaningful reference for detecting other cancer biomarkers.  相似文献   

2.
In this study, bilirubin (BR) is detected by using a novel molecularly imprinted electrochemical sensor based on a Ti3C2TxMXene-modified ITO electrode. First, Ti3C2TxMXene is synthesized by chemical etching and deposited at the ITO electrode surface by drop casting. After that, ortho-phenylenediamine (o-PD) as monomer is electropolymerized in the presence of a sodium acetate buffer solution containing the BR template to prepare BR-imprinted electrode. Field emission scanning electron microscopy (FESEM), x-ray diffraction and UV–visible absorption spectroscopy confirms the MXene synthesis. The molecular imprinted polymer (MIP) formation at the electrode is confirmed by electrochemical methods such as differential pulse voltammetry, electrochemical impedance spectroscopy, and cyclic voltammetry, and FESEM. The linearity range, limit of detection and the limit of quantification are calculated as 0.1 mg/dL to 20 mg/dL, 0.002 mg/dL, and 6.6 mg/dL respectively. Stability and reproducibility are also reported for the prepared MIP sensor.  相似文献   

3.
《Electroanalysis》2017,29(4):1103-1112
Three dimensional graphene‐multiwalled carbon nanotube nano composite (3DG/MWCNTs−Nc) was synthesized by simple hydrothermal method for the amperometric determination of caffeic acid (CA). The prepared nanocomposite was characterized by scanning electron microscopic technique (SEM), ultraviolet‐visible spectroscopy (UV), Raman spectroscopy and infrared spectroscopy (IR). Moreover, the interfacial electron transfer properties of the modified electrode were carried out by the electro chemical impedance spectroscopy (EIS). Besides, the electro chemical performance of the modified electrode was carried out by the cyclic voltammetry (CV) and amperometric (i‐t ) technique. The proposed electrode was exhibited an enhanced electrocatalytic activity towards the detection of CA. Under the optimal condition, the 3DG/MWCNTs−Nc modified electrode displayed a linear range from 0.2 to 174 μM, detection limit (LOD) 17.8 nM and sensitivity of 5.8308 μA μM−1 cm−2 and on applied potential + 0.2 V. These result showed, 3DG/MWCNTs−Nc modified electrodes showed good repeatability, reproducibility, and higher stability. In addition, the fabricated electrode was then successfully used to determine the CA in real samples with satisfactory recoveries. Which suggests that the 3DG/MWCNTs−Nc as a robust sensing materials for the electrochemical detection of CA.  相似文献   

4.
This communication describes a simple sensitive one-step potentiometric aptasensing method for quantitative detection of a referenced therapeutic biomarker (programmed death-ligand 1, PD−L1). The aptasensor is constructed by modifying PD−L1-specific aptamer on Ti3C2-MXene nanosheets-functionalized electrode. Introduction of PD−L1 induces the specific reaction between PD−L1 and aptamer, thereby resulting in the change of spatial structures. The surface electric potential of modified electrode is shifted upon addition of PD−L1 proteins before and after the reaction of aptamer with the analyte. Interestingly, potentiometric aptamer with Ti3C2-MXene nanosheets can achieve a higher sensitivity and a lower detection limit toward target PD−L1 relative to aptamer-modified electrode. Experimental results indicated that the linear range and detection limit of using Ti3C2-MXene nanosheets were 0.01–100 ng mL−1 and 7.8 pg mL−1 PD−L1, respectively. Meanwhile, the specificity, reproducibility, storing stability and accuracy of potentiometric aptasensor are acceptable for the screening of PD−L1 in human serum samples.  相似文献   

5.
2D titanium carbide (Ti3C2Tx MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti3C2Tx electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from − 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI+ cations and/or TFSI anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti3C2Tx flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effect between intercalated TFSI anions and positively charged Ti3C2Tx nanosheets or steric effect caused by de-intercalation of EMI+ cations. The expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.  相似文献   

6.
A novel electrochemical sensor based on LaNi0.5Ti0.5O3/CoFe2O4 nanoparticle-modified electrode (LNT–CFO/GCE) for sensitive determination of paracetamol (PAR) was presented. Experimental conditions such as the concentration of LNT–CFO, pH value, and applied potential were investigated. Under the optimum conditions, the electrochemical performances of LNT–CFO/GCE have been researched on the oxidation of PAR. The electrochemical behaviors of PAR on LNT–CFO/GCE were investigated by cyclic voltammetry. The results showed that LNT–CFO/GCE exhibited excellent promotion to the oxidation of PAR. The over-potential of PAR decreased significantly on the modified electrode compared with that on bare GCE. Furthermore, the sensor exhibits good reproducibility, stability, and selectivity in PAR determination. Linear response was obtained in the range of 0.5 to 901 μM with a detection limit of 0.19 μM for PAR.  相似文献   

7.
Herein, we report construction of a ferrocene-reduced graphene oxide-Mn spinel modified glassy carbon electrode (Fc−G/Mn3O4/GCE) as a sensitive electrochemical probe for hydrazine detection via its oxidation. The synergistic effect of ferrocene, graphene oxide and Mn3O4 provides it a great electrocatalytic effect. The electrochemical investigations of Fc−G/Mn3O4/GCE were studied using cyclic voltammetry, while differential pulse voltammetry was utilized for recording the electrocatalytic sensing of hydrazine. The prepared Fc−G/Mn3O4 offers a platform for sensitive and selective detection of low-level hydrazine in two linear ranges from 0.045 to 108 μM and 108 to 653 μM with limit of detection 8.5 nM. Real sample analysis was also performed in local industrial water samples with satisfactory recovery results.  相似文献   

8.
The direct electrochemical detection of cancer biomarkers using single single-component platforms is challenging. Herein, we propose constructing an efficient screen-printed electrode (SPE) based platform for selective detection of CD44 proteins, a non-kinase transmembrane glycoprotein. A sensing platform, MB-MX/HA/SPE, was developed by incorporating few-layered Ti3C2Tx nanosheets pre-loaded with methylene blue (MB) dye. The nanosheets were subsequently immobilized with hyaluronic acid (HA), which served as a ligand for the specific recognition of CD44. The simple electrode configuration and the highly conductive Ti3C2Tx facilitated the electrochemical oxidation of MB, generating a reference SWV signal that declined proportionally with the increasing concentration of CD44 owing to ligand (HA)-protein interaction. The sensor could register a sensitive inhibition response in the concentration range of 0.1 to 7.25 ng.mL−1 with a detection limit of 1.2×10−2 ng.mL−1 for CD44 proteins. Moreover, the synergistic combination of the highly conductive/adsorptive Ti3C2Tx nanosheets and hyaluronic acid (HA) led to strong antifouling characteristics even in the presence of other common proteins, such as bovine serum albumin (BSA), haemoglobin (Ig), immunoglobulin G (IgG), prostate-specific antigen (PSA), and neuron-specific enolase (NSE). The proposed strategy eliminates the need for additional components in the electrode modification procedure. In addition, incorporating MXenes as electrode material paves the way for developing sensitive biosensors with prospective applications in cancer diagnosis.  相似文献   

9.
Huang  Shan  Lu  Shuangyan  Huang  Chusheng  Sheng  Jiarong  Su  Wei  Zhang  Lixia  Xiao  Qi 《Mikrochimica acta》2015,182(15):2529-2539

We describe a square wave anodic stripping voltammetric (SWASV) platform for the determination of Cu(II). It is based on the use of amino-reduced graphene oxide (NH2-rGO) and β-cyclodextrin (β-CD) that were self-assembled on the surface of a glassy carbon electrode (GCE). The hydrophilicity and electrochemical performance of the resulting modified GCE were investigated by measurement of static contact angles, cyclic voltammetry and electrochemical impedance spectroscopy. Cu(II) was reduced at −1.1 V and then reoxidized at −0.012 V. Under optimum experimental conditions, the modified GCE exhibited excellent SWASV response in that the stripping peak currents (when sweeping between −0.3 and +0.25 V) depends on the concentration of Cu(II) in the 30 nM to 100 μM range. The limit of detection is 2.8 nM (at 3σ/slope). The modified GCE displaying good reproducibility, is stable, highly sensitive and selective. It was successfully applied to the determination of Cu(II) in synthetic and real water samples. The fast electron transfer rate and simple preparation of the NH2-rGO/β-CD composite makes it a promising electrode material for applications in sensing of heavy metal ions.

Amino-modified rGO and β-cyclodextrin form an attractive material for use in an electrochemical platform for highly sensitive and selective determination of Cu(II).

  相似文献   

10.
The optimization of three-dimensional (3D) MXene-based electrodes with desired electrochemical performances is highly demanded. Here, a precursor-guided strategy is reported for fabricating the 3D SnS/MXene architecture with tiny SnS nanocrystals (≈5 nm in size) covalently decorated on the wrinkled Ti3C2Tx nanosheets through Ti−S bonds (denoted as SnS/Ti3C2Tx-O). The formation of Ti−S bonds between SnS and Ti3C2Tx was confirmed by extended X-ray absorption fine structure (EXAFS). Rather than bulky SnS plates decorated on Ti3C2Tx (SnS/Ti3C2Tx-H) by one-step hydrothermal sulfidation followed by post annealing, this SnS/Ti3C2Tx-O presents size-dependent structural and dynamic properties. The as-formed 3D hierarchical structure can provide short ion-diffusion pathways and electron transport distances because of the more accessible surface sites. In addition, benefiting from the tiny SnS nanocrystals that can effectively improve Na+ diffusion and suppress structural variation upon charge/discharge processes, the as-obtained SnS/Ti3C2Tx-O can generate pseudocapacitance-dominated storage behavior enabled by engineered surface reactions. As predicted, this electrode exhibits an enhanced Na storage capacity of 565 mAh g−1 at 0.1 A g−1 after 75 cycles, outperforming SnS/Ti3C2Tx-H (336 mAh g−1), SnS (212 mAh g−1), and Ti3C2Tx (104 mAh g−1) electrodes.  相似文献   

11.
A simple and novel electrochemical immunoassay based on MXene (Ti3C2)−Au nanoparticles (AuNPs) was designed for sensitive screening of a disease-related biomarker, prostate-specific antigen (PSA), by using dopamine-loaded liposomes (DLL) for signal amplification. The system involves two parts, namely, sandwich-type immunoreaction to capture DLL and electrochemical measurement of dopamine. The target PSA can cause a specific antigen-antibody reaction and DLL are enriched in the enzyme-labeled pores. After Triton X-100 is injected into the detection cell, the carried DLL was quickly cracked to release dopamine wrapped in the cavity. A nanocomposite consisting of MXene (Ti3C2) support to immobilize Au nanoparticles (Ti3C2−Au) was utilized to modify a glassy carbon electrode, which gives a strongly enhanced differential pulse voltammetric (DPV) signals for dopamine. In this case, the change of DPV signal depends on the amount of dopamine released by liposomes, which is further positively correlated with the concentration of the analyte PSA. Combining the of MXene (Ti3C2)−AuNPs nanomaterials (large specific surface area, excellent electrical conductivity, and good electrocatalytic properties) with the liposome signal amplification strategy, the electrochemical immunoassay exhibited excellent performance toward PSA determination with a broad linear range of 1 pg/mL to 50 ng/mL and limit of detection down to 0.31 pg/mL (S/N=3) under the optimized testing conditions. High specificity for PSA over other disease-related biomarkers and acceptable nanocomposite/electrode stability were acquired. The excellent analytical performance shows that the current strategy provides an effective detection platform for clinical sample analysis.  相似文献   

12.
A recently discovered 2D transition titanium metal carbides also called as MXenes (Ti3C2Tx)-based nanocomposite was prepared with Cu2O through wet precipitation technique, and these materials were further developed as the electrode for sensing glucose by chronoamperometry technique. The prepared MXene-Cu2O (Ti3C2Tx-Cu2O) nanocomposite was characterized by XRD, FTIR, UV–Vis spectroscopy, FE-SEM, EDAX, and Raman spectroscopy. Morphological studies of the composites revealed that the micro-octahedral shape of Cu2O is distributed on the surface of MXene with size larger than bare Cu2O. Further, the prepared composite material was fabricated as a sensing probe, and the electrochemical activities were examined by cyclic voltammetric analysis (CV) and chronoamperometric (CA) methods. From the CV and CA investigation, the current response was higher for the composite than the bare material (Cu2O & MXene) in the presence of glucose. The amperometric investigation of MXene-Cu2O composite for the detection of glucose shows a broad linear range (0.01–30 mM) with a sensitivity of 11.061/μAmM cm?2 and a detection limit of 2.83 μM. Further, the fabricated sensor exhibits good selectivity with interfering species like NaCl, fructose, sucrose, urea, ascorbic acid, lactose, short response time, stability, good reproducibility, and compatibility with human serum sample. From the investigation, the prepared MXene-Cu2O composite is a good candidate for the direct detection of glucose molecules and is also well suitable for clinical diagnosis.  相似文献   

13.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

14.
《Electroanalysis》2017,29(4):1088-1094
We delineate the electrochemical preparation of cobalt hydroxide nanoflakes Co(OH)2 NFs on multi‐walled carbon nanotubes (MWCNTs) by potentiostatic methods. The preparation was done on the surface of glassy carbon electrode (GCE). The prepared nanocomposite was characterized by field emission scanning electron microscopy (FESEM), X‐ray diffraction spectroscopy (XRD) and X‐ray photo electron spectroscopy (XPS). The resulting f‐ MWCNTs/Co(OH)2 NFs modified GCE exhibits a good electrocatalytic activity for the oxidation of hydrazine in terms of decreasing over potential and increasing peak current. The modified electrode holds good in the linear range from 0.5 to 15.5 μM with limit of detection as 87.5 nM. The sensitivity of our modified electrode is calculated to be 5733 μA/mM cm‐2. Remarkably, the obtained LOD value of our sensor is very lower compared to the recommended concentration of hydrazine in water by World health organization (WHO) and Environmental protective agency (EPA). The modified electrode detects hydrazine selectively even in the presence of common interferants. Various water samples were chosen to study the practical feasibility of our sensor. The sensor also exhibited an appreciable stability, repeatability and reproducibility.  相似文献   

15.
A novel and sensitive method for the determination of aflatoxin B1 (AFA−B1) in ground paprika using a methyltrioctylammonium chloride ionic liquid (IL), iron oxide nanorods (Fe3O4 nanorods) and reduced graphene oxide (RGO) fabricated glassy carbon electrode (GCE) was developed. The synthesized nanoparticles, nanocomposites and modified electrode surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA/DSC) and x-ray diffraction (XRD) analyses. Moreover, the electrochemical performance of the developed sensor was determined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results demonstrate that the sensitivity of AFA−B1 is significantly enhanced on RGO-Fe3O4 nanorods-IL-GCE in comparison with bare GCE, RGO-GCE and RGO-Fe3O4 nanorods-GCE. The redox peak currents of AFA−B1 exhibited good linear relationship with its concentration in the range from 0.02 to 0.33 ng mL−1 with detection limit of (LOD) 0.03 ng mL−1 and limit of quantification (LOQ) 0.36 ng mL−1 respectively (S/N=3). In addition, the fabricated electrode showed good stability and reproducibility. The proposed technique was effectively applied to identify the AFA−B1 in real ground paprika samples with acceptable results.  相似文献   

16.
Titanium carbide (Ti3C2Tx) MXene possesses various unique physicochemical and catalytic properties. However, the electrochemical CO oxidation performance is not yet addressed experimentally. Herein, Ti3C2Tx (TX=OH, O, and F) ordered and exfoliated two-dimensional nanosheets ornamented with semi-spherical palladium nanoparticles (2.5 Wt. %) with an average diameter of (10±1 nm) (denoted as Pd/Ti3C2Tx) is rationally designed for the electrochemical CO oxidation. The fabrication process is based on the selective chemical etching of Ti3AlC2 and delamination under sonication to form Ti3C2Tx nanosheets that are used as a substrate and reducing agent for supporting in situ growth of Pd nanoparticles via impregnation with Pd salt. Interestingly, Pd-free Ti3C2Tx displayed inferior CO oxidation activity, while Pd/Ti3C2Tx enhanced the CO oxidation activity substantially. This is attributed to the combination of outstanding physicochemical properties of Ti3C2Tx and the catalytic merits of Pd nanoparticles.  相似文献   

17.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

18.
3-dimensional (3D) Fe−Co−LDH/MXene composite was synthesized by in-situ synthesis and assembly of Fe−Co−LDH rod around MXene under hydrothermal condition. Due to the unique 3D configuration and good conductivity, the obtained Fe−Co−LDH/MXene modified glassy carbon electrode (Fe−Co−LDH/MXene/GCE) showed excellent electrochemical activity for As(III) detection. Via square-wave anodic stripping voltammetry, the response current on Fe−Co−LDH/MXene/GCE had good linear relationship with As(III) concentrations (1∼1000 ppt) with superior sensitivity (0.22 μA ppt−1 cm−2) and low detection limit (0.9 ppt). The mechanism of As(III) adsorption was demonstrated. The electrode showed excellent anti-interference ability. Real water sample analysis demonstrated the Fe−Co−LDH/MXene/GCE was deployable in aqua-system.  相似文献   

19.
Ni(OH)2 nanoflowers were synthesized by a simple and energy‐efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X‐ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the response time is <5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2? during the detection. The MWCNTs/Ni(OH)2/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors.  相似文献   

20.
Novel electrochemical sensors for epinephrine (EP) based on a glassy carbon electrode (GCE) modified with a redox polymer film and iron (III) oxide nanoparticles (Fe2O3NP) have been developed. Two redox polymers‐poly(brilliant cresyl blue) (PBCB) and poly(Nile blue) (PNB), and two different architectures‐polymer/Fe2O3/GCE and Fe2O3/polymer/GCE were investigated. The electrochemical oxidation of epinephrine at the modified electrodes was performed by differential pulse voltammetry (DPV), in pH 7 electrolyte, and the analytical parameters were determined. The results show enhanced performance, more sensitive responses and lower detection limits at the modified electrodes, compared to other electrochemical epinephrine sensors reported in the literature. The best voltammetric response with the lowest detection limit was obtained for the determination of epinephrine at PBCB/Fe2O3/GCE. The novel sensors are reusable, with good reproducibility and stability, and were successfully applied to the determination of epinephrine in commercial injectable adrenaline samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号