首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

2.
合成了两种稀土高氯酸盐与L 脯氨酸配合物的晶体.经热重、差热、化学分析及对比有关文献,知其组成是[Pr2(L Pro)6(H2O)4](ClO4)6和[Er2(L Pro)6(H2O)4](ClO4)6,质量分数为99.24%和98.20%.选用RE(NO3)3•6H2O(RE=Pr,Er)、L Pro、NaClO4•H2O和NaNO3作辅助物,使用具有恒温环境的反应热量计,以2 mol•L-1 HCl作溶剂,分别测定了[2RE(NO3)3•6H2O+6L Pro+6NaClO4•H2O]和{[RE2(L PrO)6(H2O)4](ClO4)6+6NaNO3}在298.15 K时的溶解热.设计一热化学循环求得化学反应的反应焓ΔrHm分别是:63.904 kJ•mol-1和91.017 kJ•mol-1,经计算得配合物[RE2(L Pro)6(H2O)4](ClO4)6(s)在298.15 K时的标准生成焓ΔfHm(298.15 K)分别是-6 594.78 kJ•mol-1和-6 532.87 kJ•mol-1.  相似文献   

3.
以铜试剂(NaEt2dtc•3H2O)和邻菲咯啉(o-phen•H2O) 与水合氯化铽(TbCl3•3.75H2O)在无水乙醇中制得了三元固态配合物.化学分析和元素分析确定其组成为Tb(Et2dtc)3(phen).IR光谱研究表明配合物中Tb3+与NaEt2dtc中的硫原子双齿配位,同时与phen的氮原子双齿配位.用Calvet微热量计测定了298.15 K下液相生成反应的焓变ΔrHmθ(l),为(-21.819±0.055) kJ•mol-1,通过热化学循环计算了固相生成反应焓变ΔrHmθ(s),为(128.476±0.675) kJ•mol-1.改变反应温度,研究了液相生成反应的热动力学.用精密转动弹热量计测得配合物的恒容燃烧能ΔcU为(-17646.95±8.64) kJ•mol-1,经计算其标准燃烧焓ΔcHHmθ和标准生成焓ΔfHmθ分别为(-17666.16±8.64) kJ•mol-1和(-1084.04±9.49) kJ•mol-1.  相似文献   

4.
用从头算UHF/6-31G基组研究了异氰酸和羟基生成氨基和二氧化碳即HNCO+OH→NH2+CO2的反应机理.优化得到了反应途径上的过渡态和中间体,并通过振动分析对过渡态和中间体进行了确认.在UMP4/6-31G水平上计算了它们的能量,同时对零点能进行了较正.计算结果表明:此反应是多步反应,先后通过3个过渡态(TS1,TS2,TS3),2个内旋转位垒(PSI,TSII),4个中间体(IM1,IM2,IM3,IM4),其中,IM3→TS2这一步为整个反应的决速步骤,速控步的活化能为202.388lJ/mol.与异氰酸和羟基作用的另一反应通道(即HNCO+OH→H2O+NCO)的活化能(69.038kJ/mol)比较,可看出所研究反应通道为次要反应通道,这与实验结果是一致的.  相似文献   

5.
H+CH2CO反应机理的G2计算   总被引:2,自引:0,他引:2  
分别在UQCISD/6-311G(d,p)和G2理论计算水平上,对CH2CO和H反应可能存在的四条反应通道进行了研究,详细分析了每个通道的反应机理;通过振动分析的虚频数和内禀反应坐标(IRC)计算,确认了反应涉及的每一个过渡态.通过反应位能剖面的比较,发现经过一个中间体生成CH3+CO的一条途径是主反应通道,该通道是个放热反应,总焓变为-146.07 kJ•mol-1,速控步骤的位垒为55.09 kJ•mol-1.理论计算结果较好地解释了实验观察到的主要产物和副产物并存的现象。  相似文献   

6.
HNCO+OH——NH~2+CO~2反应理论研究   总被引:1,自引:0,他引:1  
用从头算UHF/6-31G基组研究了异氰酸和羟基生成氨基和二氧化碳即HNCO+OH--NH~2+CO~2的反应机理.优化得到了反应途径上的过渡态和中间体,并通过振动分析对过渡态和中间体进行了确认.在UMP4/6-31G水平上计算了它们的能量,同时对零点能进行了较正.计算结果表明:此反应是多步反应,先后通过3个过渡态(TS1,TS2,TS3),2个内旋转位垒(TSI,TSII),4个中间体(IM1,IM2,IM3,IM4),其中,IM3--TS2这一步为整个反应的决速步骤,速控步的活化能为202.388kJ/mol.与异氰酸和羟基作用的另一反应通道(即HNCO+OH--H~2O+NCO)的活化能(69.038kJ/mol)比较,可看出所研究反应通道为次要反应通道,这与实验结果是一致的。  相似文献   

7.
用从头算UHF/6-31G基组研究了异氰酸和羟基生成氨基和二氧化碳即HNCO+OH--NH~2+CO~2的反应机理.优化得到了反应途径上的过渡态和中间体,并通过振动分析对过渡态和中间体进行了确认.在UMP4/6-31G水平上计算了它们的能量,同时对零点能进行了较正.计算结果表明:此反应是多步反应,先后通过3个过渡态(TS1,TS2,TS3),2个内旋转位垒(TSI,TSII),4个中间体(IM1,IM2,IM3,IM4),其中,IM3--TS2这一步为整个反应的决速步骤,速控步的活化能为202.388kJ/mol.与异氰酸和羟基作用的另一反应通道(即HNCO+OH--H~2O+NCO)的活化能(69.038kJ/mol)比较,可看出所研究反应通道为次要反应通道,这与实验结果是一致的。  相似文献   

8.
用密度泛函理论(DFT)的B3LYP方法,在6-311G、6-311+G(d)、6-311++G(d, p) 基组水平上研究了CH3CF2O2与HO2自由基反应机理. 结果表明, CH3CF2O2与HO2自由基反应存在两条可行的通道. 通道CH3CF2O2+HO2→IM1→TS1→CH3CF2OOH+O2的活化能为77.21 kJ•mol-1,活化能较低,为主要反应通道,其产物是O2和CH3CF2OOH. 这与实验结果是一致的;而通道CH3CF2O2+HO2→IM2→TS2→IM3→TS3→IM4+IM5→IM4+TS4→IM4+OH+O2→TS5+OH+O2→CH3+CF2O+OH+O2→CH3OH+CF2O+O2的控制步骤活化能为93.42 kJ•mol-1,其产物是CH3OH、CF2O和O2. 结果表明这条通道也能发生,这与前人的实验结果一致.  相似文献   

9.
李来才  查东  田安民 《化学学报》2005,63(16):1545-1550
丁二酸脱水法是工业生产丁二酸酐的方法之一. 用量子化学密度泛函理论(DFT)对该反应的微观机理进行了详细研究, 得到了该反应的微观过程. 根据计算和分析可知: 丁二酸脱水制备丁二酸酐的微观反应途径为IM1→TS1→IM2→TS2→IM3→TS3→P+H2O, 在反应过程中IM3为氢键复合物, 整个反应的速控步为IM3→TS3→P+H2O, 其所需活化能为167.17 kJ/mol.  相似文献   

10.
CH3O2·+ClO气相反应的密度泛函理论研究   总被引:1,自引:1,他引:1  
用密度泛函方法在CCSD(T)/ 6-311++G// B3LYP/ 6-311G**水平上研究了气相反应CH3O2*+ClO的反应机理.得到了不同能量产物的可能的反应通道,获得反应势能面.整个反应过程为多通道反应,经过多个步骤完成,共找到7个中间体和10个过渡态,产物1CH3OCl+3O2(P1)和1 CH2O+1HOOCl(P4)为能量较低产物,通道1a:R→IM1→TS1/ 3→IM3→P1,4a:R→IM1→TS1/ P4→P4和4b:R→IM2→TS2/ P4→P4为较为可行的反应通道.  相似文献   

11.
裂解汽油中噻吩硫在Co-Mo/Al2O3上的催化加氢宏观动力学   总被引:3,自引:5,他引:3  
采用绝热管式固定床积分反应器,在2.5MPa~3.9MPa、513K~655K、氢/裂解汽油摩尔比1.8~3.5和裂解汽油中噻吩、单甲基噻吩和双甲基噻吩质量分数为838×10-6、137×10-6~723×10-6和192×10-6~723×10-6下,对Co-Mo/Al2O3催化剂上裂解汽油催化加氢脱硫的宏观动力学进行了研究。以Powell优化法和Merson迭代法对动力学实验数据进行非线性参数估值,建立了良好吻合实验数据的、裂解汽油催化加氢脱硫的幂函数型宏观动力学模型。噻吩、单甲基噻吩和双甲基噻吩的反应级数分别为0.721、0.735和0.87,对应的加氢反应宏观活化能依次为70.0kJ·mol-1、67.9kJ·mol-1和59.9kJ·mol-1。各噻吩基硫的转化率均随反应压力的提高而增加,3.5MPa以上时,增加的趋势减缓;反应温度的提高有利于噻吩基硫转化率的增加;593K以上时,各硫化物的转化率随温度的增加呈现线性增加的趋势。  相似文献   

12.
用密度泛函理论(DFT)B3LYP方法,取6-311G基组,计算研究了F+Cl2→ClF+Cl的反应机理.求得1个线形和2个三角形过渡态,反应能垒分别为1.24、46.37和105.09kJ·mol-1;同时发现F以∠FClCl为10~20°(或120~160°)进攻Cl2时,反应无能垒.此外,求得对称反应Cl′F+Cl→Cl′+ClF的能垒为40.57kJ·mol-1的1个过渡态.  相似文献   

13.
在(298.15 ±0.01) K下用转动弹热量计测定了离子液体硫酸乙酯-1-甲基-3-乙基咪唑(EMIES)及合成它的原料1-甲基咪唑的恒容燃烧热,通过计算得到它们的标准燃烧焓 分别为(-2671±2) 和(-286.3±0.5) kJ·mol-1;标准生成焓 分别为(-3060±3) kJ·mol-1和(-2145±4) kJ·mol-1.结合文献上硫酸二乙酯的标准生成焓数据,得到了合成离子液体EMIES的反应热(-102.3±1.0) kJ·mol-1,与合成实验中观察到的强烈放热现象是一致的.根据离子液体EMIES的热容数据,计算了不同温度下EMIES的标准生成焓.  相似文献   

14.
玉米芯热解及过程分析   总被引:24,自引:4,他引:24  
研究了农业废弃物玉米芯热解过程中气、液、固三相产率与裂解温度的关系;气相组成、液相组成与温度的关系,以及热解过程的机理。实验表明,在350℃~400℃,气相成分主要是CO2、CO所占比率为95%;随着温度的升高,H2、C2H4、CH4等气体的比率逐渐增高,CO、CO2的体积分数在逐渐降低。在450℃~500℃,CO、H2所占的比率达50%。GCMS,IR分析表明,裂解过程产生的液体主要是由含氧的化合物酚、呋喃及其衍生物组成;低温有利于酚类质量分数的增加,高温有利于4-乙基-2-甲氧基-苯酚、2-甲基-苯酚的增加;采用TGA分析,建立了热解过程的动力学方程,得到了热解过程的反应机理,即热解过程有两个分解阶段,在不同温度段具有不同的反应规律。在211℃~290℃具有三级反应的特征,其活化能为121.4kJ·mol-1;在290℃~418℃表现为0.5级反应的特征,其活化能为105.7kJ·mol-1。  相似文献   

15.
有机硫代磷酸与三辛胺作用及萃取锌的反应   总被引:1,自引:0,他引:1  
  相似文献   

16.
The standard molar formation enthalpies of (A+ )2Cd2(SO4)3[A+ is NH+ 4 or K+ ] are determined from the enthalpies of dissolution (Δ SHm) of [(A+ )2SO4(s)+ 2CdSO4(s)] and (A+ )2Cd2(SO4)3(s) in twice distilled water or 3 mol· L- 1 HNO3 solvent respectively,at 298.2 K,as: Δ fH m[(NH4)2Cd2(SO4)3,s,298.2K]=- 3031.74± 0.08 kJ· mol- 1 Δ fH m[K2Cd2(SO4)3,s,298.2K]=- 3305.52± 0.17 kJ· mol- 1  相似文献   

17.
钛酸锌高温煤气脱硫剂再生行为的研究   总被引:2,自引:4,他引:2  
在热天平装置上研究了再生反应温度、反应气体中氧气体积分数、脱硫剂颗粒粒径对钛酸锌高温煤气脱硫剂再生行为的影响。实验结果表明,较高的反应温度和氧气体积分数,较小的颗粒粒径有利于提高脱硫剂的再生反应速率。由于二次反应的影响,脱硫剂再生过程中有硫酸盐生成,提高反应温度或降低反应气体的氧气体积分数可以减少硫酸盐的生成。利用收缩核模型对其动力学行为进行了分析,结果表明,脱硫剂的再生过程存在动力学控制步骤的转移。脱硫剂再生转化率较低(<65%)时,再生过程主要受化学反应控制;再生转化率较高(>75%)时,再生过程主要受颗粒内扩散控制。表观化学反应速率常数的指前因子为8.01×10-2 m/s,活化能为19.11 kJ/mol;有效扩散系数的指前因子为3.12×10-4 m2/s,扩散活化能为48.84 kJ/mol。  相似文献   

18.
通过斜率分析法研究了P204和TOPO从磷酸体系中液液萃取微量镧的反应机制和热力学,推测出一种可能的反应历程和萃合物结构,得到萃取反应式和反应的平衡常数K=104.502,焓变ΔH=-13.02 kJ.mol-1,自由能ΔG=-25.686 kJ.mol-1,熵变ΔS=0.0425kJ.(mol.K)-1。在液液萃取反应机制研究的基础上,采用液膜萃取法进行磷酸体系中微量镧的富集回收研究,考察了载体P204(2%~10%w/w)和TOPO(1%~10%w/w)、表面活性剂磺化聚丁二烯LYF(1%~10%w/w)、内萃取剂HCl(1~5 mol.L-1)和水乳体积比A/O(2:1~7:1)对液膜萃取收率及稳定性的影响。在最优条件下,可回收94.10%~95.94%的镧,并且膜溶胀率为8%~17%,破损率为0.45%~1.93%,能够维持较好的液膜稳定性。研究结果对磷酸中的微量稀土镧回收利用具有一定的参考价值。  相似文献   

19.
乙醇在Ni-Mo合金电极上氧化的动力学模型   总被引:2,自引:0,他引:2  
利用循环伏安以及稳态极化曲线等方法研究了在1mol.L^-1KOH溶液中,乙醇在电沉积Ni-Mo合金电极上氧化的电化学特性,提出了一个数学模型来预计乙醇在电沉积Ni-Mo合金电极上的电化学行为,在碱性溶液中,Ni(OH)2/NiOOH电对的氧化还原过程是乙醇氧化的前期步骤,Ni(OH)2/NiOOH)电对相应的速度常数(即k1和k-1)是电极电位的函数,乙醇氧化是通过一个速度常数为kc1的化学反应来完成,推导出了各个动力学方程并将实验数据与方程进行比较而获得各个动力学参数,电化学速度常数k1(E)=1.41*10^7exp(0.5FE/RT)mmol.cm^-2.s^-1以及k-1(E)=0.711exp(0.5FE/RT)mmol.cm^-2.s^-1,E是相对饱和甘汞电极(SCE)的电极电位,而化学反应的速  相似文献   

20.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ&#8226;mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ&#8226;mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ&#8226;mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ&#8226;mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3&#8226;molecule-1&#8226;s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号