首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了一种薄层色谱(TLC)与表面增强拉曼光谱(SERS)联用快速检测食品中非法添加的碱性橙Ⅱ和酸性橙Ⅱ的方法。采用薄层色谱法对样品提取液进行简单分离,并优化了薄层色谱分离条件;合成并优选出水相和有机相两类银溶胶,分别用作碱性橙Ⅱ和酸性橙Ⅱ拉曼信号增强基底,继而利用优选的银溶胶为增强基底对分离出的微量物质进行表面增强拉曼光谱检测,考察了检测时间,并确立了碱性橙Ⅱ和酸性橙Ⅱ检出限分别为1和2.5 mg·L-1。将该方法用于实际样品检测,成功实现了复杂食品基质中碱性橙Ⅱ和酸性橙Ⅱ的同时快速检测。该方法具有简便、快速、经济、专属性好等优势,为复杂食品基质中碱性橙Ⅱ和酸性橙Ⅱ的同时快速检测提供了新方案。  相似文献   

2.
以表面增强激光拉曼光谱技术快速检测了豆制品中碱性嫩黄Ⅱ、碱性橙Ⅱ和皂黄的含量,并以高效液相色谱-串联质谱法进行了确证。优化出最佳提取溶剂为甲醇-水(7+3)溶液,样品前处理采用快速溶剂萃取仪(ASE)提取和凝胶渗透色谱(GPC)净化,对ASE和GPC条件进行了优化,提高了提取效率、检测灵敏度、减少提取溶剂用量并且有效去除了基质中大分子的干扰物。对三种色素的表面增强拉曼谱中的特征峰进行了归属认证。碱性嫩黄Ⅱ、碱性橙Ⅱ和皂黄的定量特征峰分别为652,995和983 cm-1;方法检出限为3.0,1.0和4.0 mg·kg-1。三种色素定量特征峰与色素浓度呈良好的线性关系,实验的回收率在83.48%~92.59%范围内,相对标准偏差小于7.2%。该方法新颖、前处理、设备操作简单、分析速度快、重现性好、灵敏度高,成功的对食品中色素进行了定性和定量测定,为食品中色素的检测提供了可靠的参考。  相似文献   

3.
酸性橙Ⅱ作为一种偶氮类化工染料,具有致癌致畸性,因此,禁止添加于食品中。但由于酸性橙Ⅱ色泽鲜艳、着色力强、价格低廉,不法商家出于利益考虑非法添加于食品中用于着色,严重威胁到食品安全和消费者健康。酸性橙Ⅱ传统检测方法主要是利用仪器分析技术进行分析,但存在前处理复杂、耗时费力等缺点,不能满足快速检测识别的目的。表面增强拉曼光谱(SERS)技术作为一种快速、灵敏的新兴指纹光谱分析技术,在食品安全检测领域的应用受到广泛关注,因此,本文采用SERS光谱结合不同纳米材料增强基底,探索酸性橙Ⅱ的快速检测方法。首先实验室自制了金纳米颗粒溶胶,金纳米棒溶胶基底,并对其结构性能进行了表征,纳米溶胶基底尺度均匀、分散性良好。基于金纳米颗粒溶胶对两种拉曼激发光源(波长为633和780 nm)对酸性橙Ⅱ分析的影响进行了研究,结果表明基于633 nm激发光源酸性橙Ⅱ的SERS响应信号更强。在此基础上,对比了Klarite~(TM)商业化固体基底、实验室自制金纳米颗粒溶胶和金纳米棒溶胶基底的增强性能,不同粒径金纳米颗粒溶胶对酸性橙Ⅱ的SERS分析有明显差异,粒径为(18.0±2.0) nm金纳米溶胶展现出较好的增强性能。利用增强性能差异不大的三种纳米材料基底(Klarite~(TM)固体基底,粒径为(18.0±2.0) nm的金纳米颗粒基底,横纵比为1.8的金纳米棒基底)对系列浓度的酸性橙Ⅱ进行了SERS检测,结果表明SERS结合三种基底对酸性橙Ⅱ的最低检出浓度分别为0.2, 0.1和0.1 mg·L~(-1)。SERS强度随着酸性橙Ⅱ浓度的增加而增强,因此探索建立了酸性橙Ⅱ的定量分析模型。研究选取1 184, 1 385和1 597 cm~(-1)三个特征主峰,确定其不同浓度酸性橙Ⅱ所对应的特征峰强度,建立酸性橙Ⅱ标准溶液浓度与单个SERS特征峰强度之间的线性回归模型,决定系数R~2的范围为0.861~0.938,RMSE为0.88~1.15 mg·L~(-1), RPD为2.5~4.0,其中, 1 597 cm~(-1)特征峰强度与浓度之间的线性回归模型最佳(R~2=0.933, RMSE=0.88 mg·L~(-1), RPD=4.0),具有良好的线性相关性。研究表明采用SERS光谱技术可对酸性橙Ⅱ进行定性定量分析,可作为一种简单、快速、高灵敏的检测方法用于色素类污染物检测。  相似文献   

4.
为了快速检测水溶液、尿液和血清中的咪达唑仑,建立了一种基于表面增强拉曼光谱(SERS)技术的检测方案。使用BWS415-785H型便携式拉曼光谱仪采集了拉曼光谱,其激发光波长为785 nm,光谱测量范围为68~2 700 cm~(-1),光谱分辨率小于3 cm~(-1),激光功率为80 mW,积分时间为5 s。首先通过密度泛函理论对咪达唑仑的拉曼光谱进行了计算,并与实验值进行对比,对拉曼峰进行了归属。然后以银溶胶作为表面增强基底,以硫酸镁(MgSO_4)水溶液作为促凝剂,选取689和827 cm~(-1)处的拉曼峰作为特征峰,对咪达唑仑进行了SERS检测。在水溶液中咪达唑仑的检测限为6μg·mL~(-1),在5~40μg·mL~(-1)浓度范围内,拉曼特征峰的强度随咪达唑仑水溶液浓度的线性曲线方程为y=188.18x-743.05,相关系数为r=0.972,回收率范围为98.2%~107.2%, RSD范围为2.08%~3.25%。在尿液中咪达唑仑的检测限为20μg·mL~(-1),在20~125μg·mL~(-1)浓度范围内,拉曼特征峰的强度随咪达唑仑尿液浓度的线性曲线方程为y=59.78x-640.71,相关系数为r=0.958,回收率范围为96.9%~107.9%, RSD范围为4.45%~5.75%。在血清中咪达唑仑的检测限为20μg·mL~(-1),在15~125μg·mL~(-1)浓度范围内,拉曼特征峰的强度随咪达唑仑血清浓度的线性曲线方程为y=30.81x+176.66,相关系数为r=0.963,回收率范围为94.2%~105.7%, RSD范围为3.60%~4.41%。该方法具有快速、准确、无损、操作简便等优点,为咪达唑仑的现场快速检测打下了良好的基础。  相似文献   

5.
碱性银胶的表面增强拉曼效应及对牛奶中三聚氰胺的检测   总被引:2,自引:0,他引:2  
在合成银胶时加入适量的氢氧化钠,得到稳定性和均一性更好的碱性银胶,研究了它对不同浓度拉曼探针分子亚甲基蓝的增强效果。相比普通银胶,浓度的变化不对其和银胶的吸附方式产生影响,根本原因是碱性银胶对亚甲基蓝分子中硫原子的优向吸附而使451 cm-1处信号始终最强。研究了银胶对同浓度不同量的亚甲基蓝分子产生的拉曼增强效应,以及该拉曼增强光谱随时间的变化关系。另外,将该碱性银胶制备成银斑点应用于掺杂三聚氰胺的牛奶样品检测,获得了三聚氰胺掺入量和拉曼信号的线性关系,该方法需要样品量仅5 μL,拉曼光谱检测时间仅需5 s,非常适合快速测定分析,利用碱性银胶对三聚氰胺在691 cm-1处的特征拉曼峰,可在3~60 mg·L-1的范围内测定三聚氰胺的掺杂量,检出限达0.28 mg·L-1。  相似文献   

6.
在聚乙烯吡咯烷酮(PVP)存在下,用多元醇还原硝酸银,Cu(NO3)2作为保护剂,快速有效的合成大量银纳米线,并优化了反应条件,得到结构均一、分散性较好的银纳米线。以罗丹明B为探针分子检测了该银纳米基底的表面增强效应,结果表明该基底对罗丹明B的表面增强效果明显,其表面增强因子可达6.4×105。文中利用这种基底得到了右旋肉碱的表面增强拉曼光谱(SERS),与其固体常规拉曼光谱(NRS)和10-3 mol·L-1水溶液的拉曼光谱对比,并对各自的峰位进行了归属。右旋肉碱固体在3 100~2800和1 700~200 cm-1处有明显拉曼振动峰,在右旋肉碱的表面增强拉曼光谱中,1700~200 cm-1处的峰得到了明显的增强。经分析,右旋肉碱分子与银纳米基底呈180°。本文还用合成的纳米银基底得到了不同浓度右旋肉碱溶液的表面增强拉曼光谱,其最低检测浓度为10-6 mol·L-1。右旋肉碱是一种重要的心血管药物,本文为其研究提供了较全面的拉曼光谱信息,为右旋肉碱的快速、特征、痕量监测提供了有力依据,也为进一步研究右旋肉碱的药理学提供了重要参考。  相似文献   

7.
在Britton-Robinson(BR)(pH为9.0)缓冲介质中,微量Hg(Ⅱ)离子能诱使被巯基乙酸钠包被的AuNPs发生聚集,以此诱发局域表面等离子体共振(localized surface plasmon resonance, LSPR)散射峰的出现,随着Hg(Ⅱ)浓度的不断增加,体系在548 nm的LSPR散射信号显著增强,其散射强度与Hg(Ⅱ)的浓度具有相关性,且在0.08~0.8 μmol·L-1范围内呈现一定的线性关系,由此构建了以Hg(Ⅱ)为目标分析物的LSPR散射分析检测方法,检测限为8 nmol·L-1。研究了体系的LSPR散射光谱以及吸收光谱,利用扫描电镜考察了AuNPs与Hg(Ⅱ)反应前后粒径的变化情况,发现单独的AuNPs呈现良好的分散状态,当加入Hg(Ⅱ)后,AuNPs呈现聚集状态。同时探讨了体系反应机理,结果表明Hg(Ⅱ)的加入与AuNPs表面的羧基发生螯合作用诱导了AuNPs的聚集。考察了体系对金属离子Hg(Ⅱ)的选择性,实验中选择了一系列的金属离子与AuNPs作用,其结果表明Hg(Ⅱ)与AuNPs作用的LSPR散射信号增强效果最为明显,而其余离子即使在浓度较高时其LSPR散射强度依然较弱,说明了实验设计方案对Hg(Ⅱ)具有优异的选择性。此外,研究了体系酸度,离子强度以及稳定剂对体系的影响。实验所建立起来的方法操作简单,分析速度快速,检测灵敏度较高。该方法已经成功用于环境水样中痕量Hg(Ⅱ)的检测。  相似文献   

8.
人体唾液与血液中的相应成分有着密切关系。利用唾液代替血液进行检测,可极大地缩短分析时间、减少检测限制、降低安全隐患等,因此在临床医学、毒品管控等方面均有重要意义。发展了便携式拉曼光谱仪利用表面增强拉曼光谱技术快速定量检测唾液中盐酸吡格列酮(口服降血糖药物)含量的方法。借助纳米金溶胶的表面增强拉曼散射效应,在激发光源波长为785 nm时,可以得到低浓度盐酸吡格列酮的高质量拉曼光谱图。同时,不同浓度盐酸吡格列酮表面增强拉曼光谱分析结果表明,该方法还可直接用于唾液中盐酸吡格列酮的定量检测。盐酸吡格列酮含量与其特征峰强度线性相关,相关系数为0.992 3,且最低检测浓度达10 μg·L-1。  相似文献   

9.
氟尼辛葡甲胺(FM)是动物专用的非甾体类消炎药,是兽医临床上最常用的消炎镇痛类药物。近年来,随着其应用范围的扩大,其不良反应逐渐显现,其在兽肉中的残留引起了人们的重视。目前猪肉中FM残留的主要检测方法为色谱法、色谱质谱联用法。设备昂贵、笨重、操作复杂等缺点极大的限制了这类方法在现场快速检测中的应用,表面增强拉曼(SERS)具有指纹识别、迅速检测、便携等优势,能克服色谱技术在现场检测中带来的不便,因而近年来被广泛应用于兽药残留的快速筛查检测。因此,为实现猪肉中FM的现场快速检测,建立了猪肉中FM的SERS检测方法。用柠檬酸钠还原氯金酸钾的方法制备金溶胶,通过单因素实验确定在样品与金胶体积比为1∶3,样品pH为6,不添加促凝剂,为检测条件。用密度泛函理论计算理论光谱,结合固体拉曼光谱,对各峰进行振动模式归属。其中731 cm-1处为吡啶环、苯环摇摆,1 085和1 376 cm-1处均为苯环上C—H振动。之后通过优化萃取前处理方法与萃取剂的选取,建立了猪肉中FM的定性定量检测方法。在该方法中,FM在猪肉基质中的特征峰为731,1 085和1 376 cm-1。选取731 cm-1作为定性定量峰,该处拉曼强度与FM浓度在1~250 mg·L-1内有良好的线性关系,R2为0.99。对加标样品的实际浓度进行检测,其检测限为1 mg·L-1,回收率在89.61%~95.63%,RSD在1.80%~3.30%内。该法稳定、快速、简单,可实现FM在猪肉中的现场快速筛查检测。  相似文献   

10.
表面增强拉曼光谱对鱼肉中组胺的快速定量分析   总被引:1,自引:0,他引:1  
基于表面增强拉曼光谱(SERS)拟建立一种适用于水产鱼制品中组胺含量的快速检测方法。采用银纳米颗粒(Ag NPs)作为活性基底和氯化钠溶液作为聚集剂获取组胺的SERS特征峰,并结合线性回归算法对鱼肉中的组胺含量进行测定分析。首先对固体组胺、组胺水溶液以及鱼肉提取液中组胺的SERS特征峰及归属进行表征分析,然后对以Ag NPs的浓缩倍数与氯化钠溶液的浓度作为SERS基底的反应条件进行优化,最后在该优化条件下对鱼肉中组胺进行定量分析。结果表明,Ag NPs在400 nm处有最大吸光度,通过透射电子显微镜观察颗粒的形状主要为球形,均匀尺寸为30 nm左右。利用4-巯基苯甲酸作为探针分子对其进行拉曼测试,所得拉曼峰具有良好的重复性,且拉曼强度很高。因此该活性基底的合成方法不仅用时少、易操作,且合成的Ag NPs可作为可靠的增强基底应用于SERS试验中。此外通过紫外-可见分光光度计检测得出氯化钠溶液使Ag NPs在溶液中发生团聚,形成热点,可实现SERS信号增强。固体组胺的拉曼光谱图反映出1 167 cm-1处出现的特征峰主要是由N-H面内弯曲引起的;1 236 cm-1处的特征峰主要是咪唑中C-H平面内弯曲和环呼吸引起的;1 291 cm-1处主要与环伸展有关;1 474 cm-1处的特征峰主要是由咪唑N-H面内弯曲振动和环伸展引起的。优化反应条件在Ag NPs的浓缩倍数为15倍、氯化钠溶液浓度为1 mol·L-1时表现出最高的增强效应,并在该优化条件下检测了浓度为5~250 mg·L-1的组胺水溶液,得出在该优化条件下检测到组胺水溶液的最低浓度为5 mg·L-1。同时在该优化条件下采集了10~100 mg·L-1范围的鱼肉提取液中组胺的SERS光谱,并建立组胺溶液的特征拉曼位移峰强度与浓度之间的线性回归模型。得出在1 180,1 258和1 425 cm-1处的特征峰与对应的拉曼峰强度值所建立的标准曲线有良好的线性关系(R2=0.918 1~0.947 3),通过比较得出在1 258 cm-1处特征拉曼位移峰强度的R2值最大,且在鱼肉中组胺的最低检测浓度为10 mg·L-1, 远低于国标中水产品中组胺最大限量检测限50 mg·L-1。因此选择1 258 cm-1处的标准曲线进行进一步的组胺检测。最后通过对鱼肉提取液中添加组胺对该标准曲线进行检测验证,得到回收率在100%~111%之间。且通过高效液相色谱法验证该方法具有适用性。由此表明选取银纳米颗粒作为活性基底、氯化钠溶液作为聚集剂的表面增强拉曼光谱技术结合线性回归法建立标准曲线用于快速检测鱼肉中的组胺是可行且准确,这为在鱼肉中的组胺含量的快速定量分析提供了参考依据。  相似文献   

11.
基于对微型光谱仪的二次深度研发,构建了新型食品安全检测微型光谱分析系统,并采用标准加入法,对牛肉粒中的食品添加剂山梨酸进行快速定量检测。结果表明,采用标准加入法消除了样本基体成分的干扰,牛肉粒中山梨酸在0~10.0 mg·L-1质量浓度范围内有良好的线性关系(R2=0.998 9),山梨酸加标回收率为99.2%~99.5%,RSD(n=5)为0.14%。该微型光谱分析系统在食品添加剂检测应用方面表现出良好的实用化前景。  相似文献   

12.
利用三维荧光光谱结合交替归一加权残差算法(ANWE),对碳酸饮料中胭脂红含量的直接测定。首先通过使用英国爱丁堡公司生产的FLS920P荧光光谱仪测量所配制的胭脂红和日落黄混合溶液样品的三维荧光光谱,利用ANWE算法来进行解析,得到校正集中浓度与真实浓度的相关系数为0.9917,平均回收率为100.92%±2.71%,结果表明,ANWE算法可靠性比较好;然后把市售碳酸饮料稀释8,9,12,13倍,分别测量它们的三维荧光光谱,结合ANWE算法进行解析,计算得到校正集中浓度和实际浓度的相关系数分别为0.993 0,0.993 0,0.993 2,0.993 2,以及饮料中胭脂红含量分别为38.88,37.71,37.68和39.65 μg·mL-1,平均浓度为(38.48±0.96) μg·mL-1;最后,为了验证所得饮料中胭脂红浓度的准确性,使用标准添加法,解析得到,校正样品中胭脂红的校正浓度和真实浓度相关系数为0.993 5,且平均回收率为102.99%±2.15%。检测结果可为饮料中食品色素的快速定量提供一种新的思路。  相似文献   

13.
基于棉涤线的毛细作用,构建成“Y”型微流控分析通道,自行研制了一种可调控试样流速的微流控分析通道装置,实现了待测液和显色剂同时进样,研究建立了一种“Y”型棉涤线微流控分析通道分析测定新方法。进行了分光光光度法与Scan-Adobe Photoshop软件处理两种检测方法的比较,结果表明光度法检出限低;Scan-Adobe Photoshop软件处理法操作简捷,分析速度快,样品用量少。应用于亚硝酸根的分析测定,两种检测方法的线性范围和检出限分别为1.0~70 μmol·L-1,0.66 μmol·L-1(光度法);50~450和45.10 μmol·L-1(Scan-Adobe Photoshop软件处理法)。回收率在96.7%~104.0%之间。该微流控通道分析方法成本低廉,分析速度快,对土壤和水样中亚硝酸根进行分析测定,结果满意。  相似文献   

14.
提出了一种测量痕量重金属镉的新方法。该方法创新性地以Mn(Ⅱ)作为载体离子,以2-(5-溴-2-吡啶偶氮)-5-二乙氨基苯酚(5-Br-PADAP)作为共沉淀剂,共沉淀分离富集虾、贝样品中的镉,同时采用火焰原子吸收法进行测定。重点探讨了共沉淀剂加入量、载体离子加入量、pH值、共沉淀时间、共存离子的干扰等因素对共沉淀分离富集效果的影响, 从而确定了Mn(Ⅱ)-5-Br-PADAP共沉淀分离富集测定镉的最佳共沉淀条件。实验结果表明,当pH 7且大量干扰离子存在的条件下,Mn(Ⅱ)-5-Br-PADAP体系对镉有良好的共沉淀分离富集效果,很好地克服了基体干扰。共沉淀体系中镉含量在0.1~1.0 mg·L-1范围内时镉含量与吸光度呈线性关系。该方法的灵敏度为0.147(mg·L-1)-1,精密度为0.73%,对镉的检出限(3σ)为4.27 μg ·L-1。食品样品比较复杂,对其中痕量重金属含量的测定必须经过消化、分离富集等一系列预处理过程才能得到最准确地答案。所以通过对比直接用火焰原子吸收法与应用本方法测定样品中镉含量的区别,进一步说明了Mn(Ⅱ)-5-Br-PADAP体系对样品中重金属镉有很好的分离富集效果。根据该方法,采用标准加入法测得干贝样品中镉的含量为1.85 mg·kg-1,干虾样品中镉的含量为1.74 mg·kg-1,基本符合国际食品法典委员会的标准。为了证明该方法的可靠性与真实性,做了加标回收实验,结果显示干虾干贝样品中镉的加标回收率范围为99.9%~100.3%,相对标准偏差为0.15%~0.83%。用Mn(Ⅱ)-5-Br-PADAP共沉淀分离富集样品中的痕量镉具有重现性好、准确度高、简单快速等的优点,分析结果令人满意。  相似文献   

15.
采用电感耦合等离子体质谱法(ICP-MS)同时测定了陶瓷食品包装容器中的重金属元素铅、镉、铬、钴、镍、锌、锑,并对影响测量的各因素进行了详细的研究。该方法的检出限为0.002~0.18 μg·L-1,加标回收率为95.8%~104.4%,相对标准偏差为1.1%~3.3%。该方法快速、简便、具有较好的准确度和精密度,对进出品陶瓷制品的日常检验提供了依据。  相似文献   

16.
随着绿色纺织理念的不断深入,国际上对于纺织品中的有毒有害化学品越来越重视。纺织品中常用的邻苯二甲酸酯(PAEs)具有生殖毒性、致突变和致癌性,可通过空气、水、食物三大途径进入人体,干扰人体的内分泌系统。由于PAEs对生态系统和公共卫生环境潜在不利的影响,近年来引起越来越多人们的关注。目前,检测PAEs的方法主要是色谱法和色-质联用法,这些方法虽然灵敏度高,但是存在着前处理繁琐复杂,耗时久,检测成本高,需要专业技术人员等缺点,不适合生产过程中的快速分析。而其他方法如,酶联免疫法等研究较少,且存在样品基质干扰,易出现假阳性等问题。因此,建立纺织品中邻苯二甲酸酯的快速分析技术具有重要意义。表面增强拉曼光谱(SERS)作为一种分子振动光谱可提供丰富的分子结构信息,具有极高的灵敏度,广泛应用于食品安全、环境监测和国家安全等领域。研究中提出并建立了一种结合便携式拉曼光谱仪,利用SERS实现纺织品中邻苯二甲酸酯的快速定量检测方法。首先利用水合肼将非水溶性的邻苯二甲酸酯类化合物转化为水溶性的邻苯二甲酰肼。同时,利用纳米金溶胶作为SERS基底,使转化后的邻苯二甲酰肼吸附于金溶胶表面,从而实现其拉曼信号的放大与检测。结果表明,通过这种方法,可实现多种邻苯二甲酸酯的快速检测。进一步研究还表明,在5~150 mg·L^-1范围内,邻苯二甲酸酯浓度与其拉曼光谱强度呈线性关系,线性方程为Y=139.04X+5 465.32,相关系数为0.993 0,检出限为5 mg·L^-1。利用该方法,还实现了不同纺织品中多种邻苯二甲酸酯的快速检测,加标回收率达80%以上,且不受纺织品中其他成分的干扰。所建立表面增强拉曼光谱检测方法操作简便、成本低且结果准确,适用于纺织品中邻苯二甲酸酯类增塑剂的快速定量检测。  相似文献   

17.
在乙醇体系中,磷霉素钠与茜素发生反应,生成稳定的1∶1的络合物,溶液颜色发生明显改变,其最大吸收波长为545nm,磷霉素钠的浓度在1.4—60mg·L-1范围内遵守比耳定律,表观摩尔吸光系数ε=3.47×103L·mol-1.cm-1,基于以上反应,本方法测定药物制剂含量与文献方法一致,回收率在99.6%—100.5%之间,结果满意。  相似文献   

18.
流动注射氢化物发生原子吸收光谱法测定禽蛋中的硒   总被引:3,自引:0,他引:3  
探讨了流动注射-氢化物发生-原子吸收光谱法测定硒时的最佳条件,建立了禽蛋中微量硒的流动注射-氢化物发生-原子吸收光谱分析方法。同时讨论了禽蛋中硒含量水平和富硒科学饲养提高禽蛋中硒含量在补硒食品中的发展前景。在优化的工作条件下,测定硒的检出限为0.25 μg·L-1,线性范围0~60 μg·L-1,相对标准偏差小于2.5%,加标回收率为95%~108%。此法克服了石墨炉法存在严重的基体干扰,需要加入适当基体改进剂以提高硒的灰化温度及传统间断氢化物发生-原子吸收光谱法分析速度慢、操作繁琐且手工进样带来的误差等缺点,操作简便、快速、灵敏度和自动化程度高。  相似文献   

19.
不确定度评估在中药近红外定量分析中的应用   总被引:1,自引:0,他引:1  
采集六一散混合过程中样品近红外光谱,建立甘草酸含量近红外(NIR)偏最小二乘(PLS)定量模型。结果校正集相关系数rcal=0.998 5,RMSEC=0.044 0 mg·g-1,预测集rval=0.947 4,RMSEP=0.124 mg·g-1,表明近红外光谱法可作为六一散混合过程中甘草酸含量的快速测定方法。在定量模型建立的基础上,设计验证试验,采用由Liao等提出的基于蒙特卡罗仿真的方法,估计β-容度-γ-置信容许区间,并计算NIR定量分析不确定度,绘制不确定度轮廓。结果表明甘草酸含量高于1.56 mg·g-1时,测量不确定度在可接受范围(λ=±20%)内,表明所建不确定度评估方法可有效评价不同浓度水平下的甘草酸含量NIR定量模型的准确性和可靠性,可为其他中药NIR定量分析方法的不确定度评估提供借鉴。  相似文献   

20.
杨俊  王文辉  王齐  李翼  孙晓东 《光谱实验室》2010,27(5):1834-1836
建立HPLC方法测定苦荞挂面中芦丁的含量。采用Kromasil C18色谱柱(4.6mm×250mm,5μm),流动相:甲醇-0.2%磷酸溶液(55∶45),流速为1.0mL·min-1。芦丁在1-20μg.mL-1范围内有良好的线性关系(r=0.9996),平均回收率(n=6)为99.0%。该方法快速、准确、重复性好,为苦荞挂面的品质评价提供了一种快速准确的检测方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号