首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
通过可逆断裂链转移加成聚合,制备了单分散的聚甲基丙烯酸叔丁酯,并一步水解获得了具有硫醇端基的聚甲基丙烯酸(PMAA).在还原氯金酸为金纳米粒子的同时,利用硫醇端基与金纳米粒子(GNPs)的耦合作用,一步获得了聚甲基丙烯酸单层保护的金纳米粒子.通过紫外光谱和透射电镜表征证实,金纳米粒子为单分散的球型颗粒,在水溶液中具有长期稳定性.聚甲基丙烯酸单层保护的金纳米粒子的光学性质和聚集状态,具有明显的pH响应性.在酸性条件下,由于PMAA被质子化发生疏水性转变,聚合物链收缩聚集,促使金纳米粒子之间互相靠近并聚集,其表面等离子共振吸收峰发生红移.从酸性调节为碱性后,(PMAA-@-GNPs)能重新分散,吸收峰发生蓝移.在多次循环后,溶液的光学信号能可逆互变且变化不大.  相似文献   

2.
pH值对硫醇修饰的金纳米粒子聚集态的影响   总被引:3,自引:0,他引:3  
制备了3 巯基丙酸修饰的金纳米颗粒,溶胶的pH值变化导致颗粒表面的电荷发生变化.随着pH值的降低,颗粒的聚集体增大,在pH值小于4时颗粒下沉.加碱增大溶胶的pH值,聚集的颗粒会重新分散.  相似文献   

3.
利用立方硅氧烷(odaaps)作为保护剂合成了金纳米颗粒,利用紫外-可见(UV-vis)吸收光谱、透射电镜(TEM)对纳米颗粒进行了表征。通过改变纳米溶胶的pH值,从而改变立方硅氧烷上羧基的存在形式,控制纳米颗粒表面的电荷,实现金纳米颗粒的可逆聚集与分散;当将其pH值降低至2.5时,颗粒能够完全沉淀,加碱调节其pH与原始值(pH=9)一致时,聚集的颗粒会自动重新分散形成溶胶,其具有与起始一致的高分散性。  相似文献   

4.
吴超  郭红燕  胡家文 《化学学报》2009,67(14):1621-1625
研究了α-甲氧基-ω-巯基聚乙二醇(mPEG-SH, 5000 MW)修饰的金溶胶的稳定性, 初步探讨了其稳定机制. 将线性mPEG-SH通过巯基化学吸附于金溶胶表面, 可形成高分子层包被的金溶胶. 研究结果表明, PEG修饰的金溶胶可以在pH=1~13.5或盐浓度高达1.20 mol/L的较苛性条件下保持稳定. 这是由于金溶胶表面吸附的高分子保护层为溶胶提供了新的空间稳定, 取代了溶胶原来的DLVO稳定(实质是电荷稳定). 因而, PEG保护的金溶胶在很大程度上克服了DLVO稳定的溶胶对环境敏感、易聚沉的缺点, 能在复杂的条件(如生理条件)下应用. 鉴于PEG的水溶性、无毒性和生物亲和性, 这种具有较高稳定能力的金纳米粒子/PEG复合体结合了金纳米粒子和PEG的优异性能, 可作为生物纳米探针用于复杂条件下的生物分析.  相似文献   

5.
金纳米粒子与单链DNA的相互作用   总被引:2,自引:1,他引:1  
研究了金纳米粒子与单链DNA在不同pH值时的相互作用以及金纳米粒子与不同碱基序列单链DNA的相互作用. 结果表明, 在pH为12.6的强碱性条件下, 单链DNA能使金纳米粒子稳定分散在溶液中; 在pH为1.4的强酸性条件下, 单链DNA能保护金纳米粒子不发生融合, 而只发生团聚, 且团聚现象具有可逆性. 不同寡核苷酸对金纳米粒子的亲和力按poly dA>poly dC>poly dT的顺序依次减弱. 单链DNA对纳米金的保护作用强度与单链DNA的长度成正比.  相似文献   

6.
采用可逆加成断裂链转移(RAFT)聚合制备了具有硫醇端基的聚甲基丙烯酸叔丁酯(PtBMA),通过其水解得到具有pH刺激响应的聚甲基丙烯酸(PMAA)。利用硫醇端基与金之间的强耦合作用获得了聚甲基丙烯酸单层修饰的金纳米粒子(PMAA-GNPs)催化体系。利用UV-Vis光谱和透射电子显微镜(TEM)研究了PMAA-GNPs催化剂在不同pH值下的分散状态。以NaBH4还原对硝基苯酚的反应,验证了此催化体系的pH响应性。结果表明,调节体系的pH值为酸性,PMAA塌缩和包覆在金纳米粒子(GNPs)的表面,引起GNPs的聚集,从而降低了催化效率。反之,在碱性环境中,在PMAA链的排斥作用下,GNPs能较好的分散,提高催化效率。  相似文献   

7.
采用硝酸氧化方法对多壁碳纳米管(CNT)的侧壁进行修饰,得到表面羧基含量可控的CNT,并进一步考察了碳管表面基团分布与纳米RuO2催化剂在CNT上的分散度及催化氧化活性之间的关系.以多齿羧酸配体作为稳定剂,合成了RuO2和IrO2纳米颗粒水溶胶,并通过改变配体的种类及数最对纳米颗粒团聚体粒径进行调控.研究结果表明,羧酸配体和碳管表面的羧基均有助于纳米氧化物颗粒的分散.  相似文献   

8.
采用油相高温分解法制备了粒径可控且单分散的油溶性Fe3O4磁性纳米粒子(MNPs-OA), 并通过配体交换对其表面进行了亲水性修饰, 制备了柠檬酸(CA)、 N-(三甲氧基硅丙基)乙二胺三乙酸钠(SiCOOH)、 丁烷四羧酸(BTCA)和乙二胺四乙酸 (EDTA)四钠4种多羧基配体修饰的水溶性Fe3O4磁性纳米粒子(MNPs-CA, MNPs-SiCOOH, MNPs-BTCA 和MNPs-EDTA), 其中首次选用四羧基配体BTCA和EDTA四钠来修饰Fe3O4磁性纳米粒子(MNPs). 对油溶性MNPs和4种水溶性MNPs的形貌、 结构、 化学组成和磁性能进行了表征, 并对4种多羧基配体修饰的水溶性MNPs在水相中的稳定性和分散性进行了表征. 结果表明, 所得MNPs的平均粒径为15 nm, 具有超顺磁性, 配体交换后的水溶性MNPs具有良好的亲水性, 并在弱酸~碱性很宽的pH范围内具备良好的分散稳定性. 此类多羧基修饰的水溶性MNPs可与适当的阳离子聚电解质进行组装, 从而得到在磁靶向载体和磁共振造影(MRI)显影中具有良好应用前景的磁性自组装微囊.  相似文献   

9.
以双子表面活性剂丁烷-1,4(N-十四烷基-N,N-二甲基)溴化铵为表面修饰剂,石油醚/正丁醇为溶剂,抗坏血酸为还原剂,在不同温度条件下一步法分别得到油基-金纳米流体和水基-金纳米流体.对纳米流体中悬浮纳米金属颗粒的形貌、粒径、光谱性质等进行了表征.结果表明,p H=7~8的冰水浴条件下制得的纳米金颗粒具有亲油性,粒径均一且分散稳定性较好.采用紫外光谱法分别考察了极性有机溶剂和热作用对油基-金纳米流体稳定性的影响.结果表明,极性有机溶剂添加量超过30%(体积分数)时,对纳米流体稳定性的影响显著;随着热处理温度的升高,纳米流体中分散的纳米金颗粒的稳定时间逐渐缩短.  相似文献   

10.
丝素蛋白质原位还原制备纳米贵金属胶体及表征   总被引:6,自引:0,他引:6       下载免费PDF全文
室温下, 不加任何还原剂, 丝素蛋白质溶液可以原位还原贵金属前驱体制备纳米贵金属胶体, 用光谱法研究了还原反应机理以及pH和反应物摩尔比对反应的影响, 用FT-IR, TEM, AFM对所得溶胶结构作了表征. TEM照片显示丝素-金溶胶为新颖核-壳纳米结构的生物缀合物(bioconjugate), 丝素-银溶胶为十几个核-壳型结构的丝素-银纳米颗粒聚集成的簇状物. 金溶胶具有高度的分散性和稳定性, 而银溶胶相对而言较差.  相似文献   

11.
Zhang J  Wang X  Yang X 《The Analyst》2012,137(12):2806-2812
In this article, we report a colorimetric approach for the determination of hypochlorite (OCl(-)) with gold nanoparticles (Au NPs). The test proceeds as two individual steps and selectivity is developed based on the strong oxidizing ability of hypochlorite. In concentrated phosphate buffer (PB), the red solution of citrate-capped Au NPs could be stabilized by the chemisorption of 11-mercaptoundecanoic acid (MUA), without which the colloidal suspension turned blue because of salt-induced particles aggregation. However, by its oxidizing power, OCl(-) converted the alkanethiol to a sulfonate derivative, which could not protect Au NPs from aggregation, thereby a blue solution was observed after the subsequent addition of Au suspension. With this method and under the optimal conditions (28 nm Au NP, 50 mM PB, pH 7.0, and 10 min for the colorimetric response), 1.5 μM of OCl(-) can be easily visualized by the naked eye. This sensitive and selective colorimetric assay opens up a fresh insight of facile, rapid, and reliable detection of OCl(-), and may find its future application in the monitoring of OCl(-)/HOCl in waters sanitized by chlorine or hypochlorite compounds.  相似文献   

12.
Xue  Yang  Dong  Bo  Liu  Xuehui  Wang  Fengchao  Yang  Jie  Liu  Dingbin 《中国科学:化学(英文版)》2019,62(2):280-286
Using stabilizing agents to maintain the physicochemical properties of colloids in complex environments is crucial for their realworld applications. In this article, we describe how selenium-(Se-) terminated polyethylene glycol(PEG) can serve as a highaffinity stabilizing agent for gold nanoparticles(AuNPs). Compared to Au NPs modified with standard thiolated PEG(S-PEG),Se-PEG-coated Au NPs are much more stable under extreme conditions such as high/low pH, high salt content, and high temperatures. We demonstrate that the Se anchor can prevent the dissociation of PEG ligands from Au NP surfaces in living cells,where a higher concentration of biothiols is usually present. These results indicate that Se-PEG is an excellent stabilizing agent that may facilitate further studies on metal NPs for various complex and physiological systems.  相似文献   

13.
Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.  相似文献   

14.
We report a novel strategy on the controlled assembly of gold nanoparticles (NPs) at the air-water interface by designing a concentration gradient of electrolytes utilizing volatile weak acidic electrolytes. Films of close-packed Au NPs can be facilely obtained by exposing citrate-protected gold colloids to the vapor of formic acid for several hours in an airtight desiccator at room temperature. Both the higher interfacial concentration of formic acid and the buffer effect of citrate solution play the key roles in the assembly. They engender a gradient distribution of hydrogen ions such that to trigger the interfacial assembly of gold NPs while preventing the bulk colloid from aggregation and coagulation. Comparative investigations have also been performed either using other volatile electrolytes like weaker acetic acid and stronger hydrochloric acid or adding an electrolyte directly into the colloids. The as-prepared films of gold NPs can serve as good substrates for surface-enhanced Raman scattering (SERS). This strategy has also been applied to the assembly of some other NPs like colloidal Pt at the air-water interface.  相似文献   

15.
Block copolymer-supported Ag Nps (nanoparticles) have either a "cherry"-like or "raspberry"-like morphology [Antonietti, et al., Adv. Mater. 7 (1995) 1000-1005] depending on the amount of silver nitrate loading and the external conditions. Sonication favors silver nitrate and polyethyleneimine diffusion; the nucleation sites are well distributed in the micellar cores, so it is easy to form the cherry-like Ag NP colloids. However, when the amount of silver nitrate is decreased, it is heating that induces the formation of raspberry-like Ag NP colloids. The Ag NP colloids were investigated by transmission electron microscopy to demonstrate the nanosize dimensions and the location of the Ag NPs in the micelles. X-ray diffraction was employed to determine the crystal structure of the Ag NPs. UV-vis spectroscopy was employed for further qualitative characterization of the optical properties of Ag NPs.  相似文献   

16.
A versatile scheme for the preparation of nanoparticle (NP) multilayers is presented. The method is based on the step-by-step assembly of NPs and bishydroxamate disulfide ligand molecules by means of metal-organic coordination using easily synthesized tetraoctylammonium bromide (TOAB)-stabilized gold NPs. The assembly of NP multilayers was carried out via a Zr(IV)-coordinated sandwich arrangement of the hydroxamate ligands on Au and glass surfaces. The latter were precoated with electrolessly deposited Au clusters to enable binding of the first NP layer. The new method avoids the need to perform elaborate colloid reactions to prepare the NP building blocks. Au NP monolayer and multilayer films prepared in this manner were characterized by UV-vis spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM), showing a regular growth of NP layers. The use of coordination chemistry as the binding motif between repeat layers allows for the convenient assembly of hybrid nanostructures comprising molecular and NP components. This was demonstrated by the construction of Au NP multilayers with controlled spacing from the surface or between two NP layers. Drying the samples during or after the construction process induces NP aggregation and changes in the film morphology and optical properties.  相似文献   

17.
The colloidal behavior of natural organic matter (NOM) and synthetic poly(acrylic acid) (PAA)-coated ferrimagnetic (γFe(2)O(3)) nanoparticles (NPs) was investigated. Humic acid (HA), an important component of NOM, was extracted from a peat soil. Two different molecular weight PAAs were also used for coating. The colloidal stability of the coated magnetic NPs was evaluated as a resultant of the attractive magnetic dipolar and van der Waals forces and the repulsive electrostatic and steric-electrosteric interactions. The conformational alterations of the polyelectrolytes adsorbed on magnetic γFe(2)O(3) NPs and their role in colloidal stability were determined. Pure γFe(2)O(3) NPs were extremely unstable because of aggregation in aqueous solution, but a significant stability enhancement was observed after coating with polyelectrolytes. The steric stabilization factor induced by the polyelectrolyte coating strongly dictated the colloidal stability. The pH-induced conformational change of the adsorbed, weakly charged polyelectrolytes had a significant effect on the colloidal stability. Atomic force microscopy (AFM) revealed the stretched conformation of the HA molecular chains adsorbed on the γFe(2)O(3) NP surface at pH 9, which enhanced the colloidal stability through long-range electrosteric stabilization. The depletion of the polyelectrolyte during the dilution of the NP suspension decreased the colloidal stability under acidic solution conditions. The conformation of the polyelectrolytes adsorbed on the NP surface was altered as a function of the substrate surface charge as viewed from AFM imaging. The polyelectrolyte coating also led to a reduction in magnetic moments and decreased the coercivity of the coated γFe(2)O(3) NPs. Thus, the enhanced stabilization of the coated maghematite NPs may facilitate their delivery in the groundwater for the effective removal of contaminants.  相似文献   

18.
Ligand-stabilized gold nanoparticles (Au NPs) are promising materials for nanotechnology with applications in electronics, catalysis, and sensors. These applications depend on the ability to synthesize stable and monodisperse NPs. Herein, the design and synthesis of two series of dendritic thioether ligands and their ability to stabilize Au NPs is presented. The dendrimers have 1,3,5-trisubstituted benzene branching units bridged by either meta-xylene or ethylene moieties. A comparison between the two ligands shows how both size control and the stability of the NPs are influenced by the nature of the ligand-NP wrapping interaction. The meta-xylene-bridged ligands provided NPs with a narrow size distribution centered around a diameter of 1.2 nm, whereas the NPs formed with ethylene-bridged dendrimers lack long-term stability with NP aggregation detected by UV/Vis spectroscopy and transmission electron microscopy. The bulkier tert-butyl-functionalized meta-xylene bridges form larger ligand shells that inhibit further growth of the NPs and thus provide a simple route to stable and monodisperse Au NPs that may find use as functional components in nanoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号