首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
液相放电能够产生各种活性物质,其中羟基自由基(OH),氢自由基(H)被认为是引发液相化学反应的主要活性物种,但由于其活性强寿命短的特点,测量比较困难,由于缺少标准样品,定量测量更为困难。用光学方法测量自由基是一种直接测量方法,其特点是瞬时在线测量,能立即获得数据,进行时间和空间分布测量。为了研究微波水中放电产生的自由基特性,利用发射光谱诊断技术对微波水中放电产生的活性物质进行了在线检测,考察了微波功率、反应器内部压强对OH自由基相对光谱强度的影响,并观测了等离子体中OH自由基强度的空间分布;同时,估算了微波液相等离子体中的电子激发温度。实验结果表明,微波水中放电可以产生大量的OH,H,O自由基,其中OH自由基的相对光谱强度最强,并随微波功率的增加呈现明显上升的趋势,随反应器内部压强的增大而迅速减弱;以OH为主的自由基主要产生于电极尖端附近。微波液相等离子体的电子激发温度约为0.33×104 K。  相似文献   

2.
氢能作为一种高热值、无污染的清洁能源日渐受到国内外专家学者的追捧。微波液相放电技术在醇类中制氢具有光明的研究前景,为氢能的研究开发开辟了一条新的途径。通过对乙醇制氢发射光谱分析,有利于分析微波液相放电醇类制氢机理的探讨,为进一步改进微波液相放电制氢技术奠定基础。本文采用2.45 GHz频率微波在液相醇类中放电实现了微波液相等离子体制氢,并借助发射光谱仪对微波液相放电乙醇制氢光谱特性进行了研究。研究结果显示:微波液相放电乙醇制氢过程中,能产生大量的H,O,OH,CH,C2等活性粒子;乙醇放电光谱中OH自由基、H自由基和O自由基的光谱强度要远大于纯水中OH自由基、H自由基和O自由基的光谱强度;高能粒子打开水分子中的O—H键,脱氢制氢的过程较乙醇分子难度要大,因此在微波乙醇放电制氢过程中,氢气的来源主要是乙醇分子的脱氢重组,水分解产氢的贡献度较低;在外界压力与温度一定的条件下,OH,H,O自由基的发射光谱强度随着功率的增加显著增强,而CH和C2活性粒子发射光谱强度则出现减弱趋势,这表明较大的微波功率不仅使产生的高能粒子的能量增加,同时高能粒子的密度也有所增加,导致较多的CH和C2基团被充分碰撞打开。  相似文献   

3.
朱国强  李进贤 《物理学报》2012,61(23):355-361
压强和微波功率是高气压空气微波放电中的两个重要影响因素,取值对放电过程中等离子体动力学特征及自组织结构有着直接的影响.利用有效扩散模型和双重网格方法,对放电过程中压强和微波功率的影响进行了数值研究.结果表明,压强降低时放电等离子体将从间隔分明的等离子体斑点结构变为一团呈扩散特性的等离子体,而微波功率增大时,等离子体向着微波入射方向的传播速度随之快速增大,传播过程中等离子前沿的跳跃性和斑点状的自组织结构也更加分明.  相似文献   

4.
报道了利用多腔耦合微波表面波等离子体增强化学气相沉积(PECVD)的方法制备类金刚石(DLC)薄膜。通过发射光谱(OES)测量,对Ar等离子体中的各种放电参数以及全部四个腔室内放电的均匀性作出评估。采用表面轮廓仪测量了薄膜的厚度;薄膜的表面形貌、组成结构通过原子力显微镜(AFM)、激光拉曼光谱和X射线衍射光谱(XPS)进行了表征。在12.5μm厚度的有机薄膜聚酯(PET)表面沉积一定厚度DLC后,通过测量水蒸气透过率(WVTR)对DLC薄膜的阻隔性能进行了研究。结果表明,这种多腔耦合微波表面波等离子体装置,不仅能够实现四个腔室同时相对均匀的放电,也能够实现单个腔室的轴向均匀放电。制备的DLC薄膜结构致密、成分均匀,可以使PET薄膜阻隔性能提高约20倍。  相似文献   

5.
作为一种常用的等离子体诊断方法,原子发射光谱法具有非侵入、在线诊断、时空分辨等优点,在等离子体诊断领域得到了广泛的应用。作为一种单次脉冲离子源,真空弧离子源具有结构紧凑、工作压强低、束流大和可以随时开始工作等其他类型的离子源所无法比拟的优点,在离子源研究和应用领域受到了极大的关注。为了研究真空弧离子源的放电过程,对其放电生成等离子体的特性进行详细描述,并为进一步的离子源研究和改进奠定基础,采用原子发射光谱法对其放电生成等离子体的参数进行诊断。本文结合原子发射光谱的斯塔克(Stark)展宽和Saha-Boltzmann方程,发展了两种针对光谱仪采集到的发射光谱数据的处理方法,可对等离子体的电子温度、电子密度、离子温度以及热运动状态进行诊断。对阴极为Ti(H)材料时真空弧离子源放电生成的等离子体,分别采用这两种方法对其进行了诊断,对诊断结果的有效性进行了判断。此外,还对光谱采集过程中,实验室背景辐射对诊断结果的影响进行了讨论。  相似文献   

6.
报道了利用多腔耦合微波表面波等离子体增强化学气相沉积(PECVD)的方法制备类金刚石(DLC)薄膜。通过发射光谱(OES)测量,对Ar等离子体中的各种放电参数以及全部四个腔室内放电的均匀性作出评估。采用表面轮廓仪测量了薄膜的厚度;薄膜的表面形貌、组成结构通过原子力显微镜(AFM)、激光拉曼光谱和X射线衍射光谱(XPS)进行了表征。在12.5μm厚度的有机薄膜聚酯(PET)表面沉积一定厚度DLC后,通过测量水蒸气透过率(WVTR)对DLC薄膜的阻隔性能进行了研究。结果表明,这种多腔耦合微波表面波等离子体装置,不仅能够实现四个腔室同时相对均匀的放电,也能够实现单个腔室的轴向均匀放电。制备的DLC薄膜结构致密、成分均匀,可以使PET薄膜阻隔性能提高约20倍。  相似文献   

7.
潘宁型放电等离子体的发射光谱分析   总被引:4,自引:0,他引:4  
李慧玉  施芸城  冯贤平  杨平 《物理实验》2005,25(7):15-17,24
重新设计了潘宁型等离子体源实验装置,在低气压下得到了稳定的等离子体.分析了等离子体的发射光谱,得到了等离子体光谱强度与放电气压和放电电压之间的关系,并且对氮气的发射光谱进行了分析.  相似文献   

8.
利用发射光谱方法对真空弧离子源放电等离子体特性进行了诊断。同时,基于局域热力学平衡等离子体的发射光谱理论,建立了等离子体的发射光谱拟合模型,对真空弧放电等离子体光谱进行了分析。针对TiH真空弧离子源,分别对330~340nm与498~503nm范围内Ti+离子与Ti原子的发射光谱进行了对比拟合,获得了较好的符合度,解决了传统Boltzmann斜率法计算等离子体温度需要孤立的不受附近谱线干扰的线状光谱的困难。最后,利用该方法计算了真空弧离子源在不同放电条件下的等离子体发射光谱、等离子体密度与温度参数。结果表明,TiH真空弧放电等离子体温度在1eV左右,同时,放电所产生的氢原子要远远大于金属原子,并且随着真空弧离子源馈入功率的增加,TiH电极中解吸附出来的氢比蒸发出来的金属增加得更多,这有利于TiH离子源在中子发生器方面的应用。  相似文献   

9.
大气压液体阴极辉光放电发射光谱检测水体中的铅   总被引:1,自引:0,他引:1  
建立了一套基于大气压液体阴极辉光放电原子发射光谱(electrolyte cathode atmospheric glow discharge atomic emission spectroscopy,ELCAD-AES)的水中金属离子检测装置,并在该装置上对水中金属离子铅(Pb)进行了检测,随着Pb浓度的增加,Pb元素的发射光谱强度显著增强,Pb浓度在10~80 mg·L-1范围内时,其发射信号强度与浓度呈现一定的线性关系。实验考察了放电电流、易电离元素对Pb发射光谱的影响,表明当电流增加到70 mA时,Pb元素的信号强度最强,溶液中的易电离元素对Pb元素信号强度产生微弱影响。同时探讨了酸化试剂对Pb发射光谱的影响,发现用HNO3酸化溶液时Pb发射光谱强度最强,而降低pH值可以有效的提高Pb发射光谱强度。研究了等离子体内不同区间的原子发射光谱强度,结果表明金属原子Pb的发射光谱集中在靠近阴极的区域,因此获得了Pb元素的最佳探测位置。计算得到采用便携式光谱仪作为探测系统的水体Pb元素痕量检出限为0.7 mg·L-1,相对标准偏差为1.7%,两种实际水样检测回收率分别为95%~106%,表明本方法有较好的准确性。研究结果为进一步开展水体痕量重金属元素液体阴极辉光放电光谱检测提供了方法。  相似文献   

10.
基于高功率脉冲磁控溅射(HiPIMS)技术开发的筒形溅射阴极,配合电磁系统可有效地提升等离子体的输运效率.然而电磁系统的引入反作用于筒内放电特性,从而使靶面放电面积和放电强度无法同时维持.鉴于此,本文通过调整磁场布局,研究了靶面切向(横向)磁场和法向(纵向)磁场对靶面放电的作用规律,优化后靶面切向磁场分布更加均匀,磁场强度高于40 mT的靶面区域占比由51%增至67%,同时法向峰值强度外移,强度由73 mT增至96 mT.采用Ar/Cr体系放电发现:相同工艺条件下,优化后的溅射阴极辉光变亮,靶电流增大,放电面积变宽,放电特性得到显著提升.利用等离子体整体模型仿真和发射光谱仪检测发现优化后离子电流和光谱强度得到明显提升,Cr粒子密度提高一倍,增至2.6×10^20 m^–3,且离化率上升至92.1%,同时输出离子通量提高近一倍,实现了靶面放电与离子输出的双促进.  相似文献   

11.
在微波化学气相沉积装置上采用微波激发氢气甲烷体系等离子体,通过光学多道分析仪采集等离子的发射光谱.实验表明,甲烷在等离子体中的裂解产物主要以CH,CH-,C2基团的形式存在.这些基团的发射光谱强度主要受放电压强和放电功率的影响.随着微波功率的增加甲烷基团发射光谱强度呈增长的趋势;而随着放电压强的增加则是先增大,后减小.这些实验结果对于理解微波等离子体化学气相沉积(MPCVD)中各种反应过程,调整薄膜制备工艺提供了参考.  相似文献   

12.
氧气放电等离子体温度测量研究   总被引:1,自引:0,他引:1  
Li LC  Wang ZQ  Li GF  Duo LP 《光谱学与光谱分析》2011,31(10):2651-2654
为了考察电激励氧碘激光器中放电腔内的宏观气体温度,由两片蚌形铜电极和一根长30 cm内径1.65 cm的耐热玻璃管构成放电腔装置,用一台最高功率500 W,频率13.56 MHz的射频装置对压力1 330Pa的纯氧气体进行了介质阻挡放电研究。利用O2(b,ν=0)的P支发射光谱,分别采用波尔兹曼直线作图法和计算机模拟发射光谱法,测量了氧气射频放电等离子体的宏观气体温度。对于低分辨率光谱,利用高斯拟合进行了分峰处理,利用峰面积表征发光强度,通过波尔兹曼作图法得到了宏观气体温度。利用氦氖激光器测得的光谱仪狭缝函数获得了计算1机模拟发射光谱,以最小二乘法作为判据,通过比较计算机模拟发射光谱和实测光谱获得了宏观气体温度。  相似文献   

13.
利用光学多道分析系统(Optical Multiple Analysis -OMA),采用发射光谱方法,对甲醇气体介质阻挡放电 (dielectric barrier discharge---DBD)分解制氢过程进行了实验研究.通过对甲醇气体DBD放电等离子体荧光光谱的归属,确定了甲醇放电的主要荧光产物为CO、OH、H和CH;另外,还对CO和Ha的荧光辐射强度随放电时间的演变过程进行了实验研究,发现在放电初始阶段,CO和Ha的荧光辐射强度随放电时间急剧增强,表明了DBD放电能有效地分解甲醇气体,并由此对甲醇分解过程进行了分析讨论.在放电等离子体甲醇制氢过程中,最终产物是H2和CO;H2主要来自于CH2O分解以及甲醇分解产生的H原子直接生成;CO主要来源于CH2O分子分解产生.CH2O是甲醇分解制氢过程中一个关键的中间产物.  相似文献   

14.
发射光谱是对等离子体进行检测和诊断最常见的应用方法,提供了等离子体的化学和物理过程丰富的信息,放电过程中等离子的动力学行为的分析研究对于气体放电机理及其应用具有重要的作用。设计了一套介质阻挡空气放电光谱测量装置,测量了在实验条件下的发射光谱数据,通过发射光谱分析了介质阻挡放电等离子体的粒子演化。建立了数值计算模型,耦合了密度方程、能量传递方程以及Boltzmann方程,对于介质阻挡空气放电过程中的各种粒子变化规律进行了分析,解释了发射光谱的特征。结果表明,约化场强越大,激发的粒子数的浓度越大。对于40,60与80 Td的约化场强,同一时刻同种粒子数的浓度会有一到两个数量级的差距。电场的激发产生了大量的N2(A3),N2(B3)与N2(C3)的粒子,但是由于其能级较高,而迅速发生了转化,并且在放电的10-6 s后,这些粒子的产生与转化达到了平衡。相比激发态氮分子,O2(A1) O2(B1)与O2(A3Σ+u)的峰值浓度并不低,这些粒子的能量相对较低,跃迁产生的谱线波长较长,光谱仪并未清晰捕捉到氧分子的发射光谱。O粒子的峰值浓度较小,因此其跃迁产生的发射光谱较弱。放电过程中产生的较为稳定的O3浓度持续增加,NO2的浓度达到峰值后也不会下降。建立的模型计算结果可以很好地解释实验中测量得到的发射光谱数据。  相似文献   

15.
为了对绝缘阻挡放电(DBD)等离子体进行参数优化,以常压DBD等离子体为研究对象,在常温常压下使用可见光光栅光谱仪对等离子体发光光谱进行了诊断,得到了N2和O2的第二正带跃迁谱线. 通过对等离子体光谱的分析发现,等离子体发射光谱强度随着电压升高而增大,并且在39—41kHz的范围内可以获得稳定的等离子体发光. 与此同时,Helium气体的引入,可以在很大程度上增加等离子体的发光强度. 与理论分析结合,证实了光谱测量方法在DBD等离子体研究上的可行性. 关键词: 绝缘阻挡放电 光谱 荧光 光谱仪  相似文献   

16.
大气压等离子体针产生空气均匀放电特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李雪辰  袁宁  贾鹏英  常媛媛  嵇亚飞 《物理学报》2011,60(12):125204-125204
大气压空气放电由于脱离了真空装置,易于实现流水线生产,因而在工业上具有广泛的应用. 采用等离子体针装置在空气中产生了稳定的大气压均匀放电. 利用光谱法对等离子体的相关参数进行了空间分辨率测量,并通过光学方法对放电机理进行了研究. 结果表明,等离子体针产生的放电存在电晕放电和等离子体羽放电两种模式. 在稳定的等离子体羽放电模式中,发光分为强光区和弱光区. 弱光区放电的发展速度远大于强光区的发展速度,电子能量和电子密度均是弱光区比强光区大. 对均匀放电的气体温度和振动温度的研究表明,强光区放电遵循汤生击穿机理而弱光区为流光放电. 这些结果对大气压空气放电的工业应用具有重要意义. 关键词: 大气压均匀放电 等离子体针 发射光谱 放电机理  相似文献   

17.
用Langmuir探针对射频(13.56 MHz)感应等离子体进行了诊断,给出了Ar等离子体轴向和径向参数随气压的变化。采用发射光谱测量了等离子体中氩原子的750.3nm谱线强度随气压在轴向的变化,其变化趋势与Langmuir探针测量结果的变化趋势相一致。测量了氩离子的434.8nm谱线强度随气压在轴向的变化并获得了氩离子的434.8nm谱线强度与氩原子的430.0nm谱线强度的比值在轴向三个不同位置的变化。从测得的结果可知:在放电室中上部形成了均匀稳定的高密度等离子体,在靶附近有所降低,在中部以下等离子体密度逐渐变低;在径向6~7 cm以内的区域等离子体参数变化不大,形成了均匀稳定的等离子体,等离子体参数在器壁处变化明显。  相似文献   

18.
利用同轴空心阴极放电装置,产生氦低温等离子体。通过对等离子体的发射光谱进行测量和计算,研究放电功率以及氦气压强对等离子体的电子激发温度的影响。结果表明:氦低温等离子体的发射光谱主要由连续谱和原子谱线构成,放电功率和压强对谱线的强度具有明显影响。压强的变化不仅影响电子从电场中获得的能量,还会影响电子与原子的碰撞频率,从而导致电子激发温度随着氦气压强的增大,出现先上升后下降的变化趋势。  相似文献   

19.
大气压等离子体射流因其产生的等离子体羽富含活性粒子而在废水净化、元素探测、材料处理等方面具有良好的应用前景。通常等离子体羽的直径较小,限制了其工作效率。针对于此,利用交流电压激励大气压氩气等离子体射流,产生了直径约为14 mm的大尺度均匀等离子体羽。采用发射光谱法对电子密度和氧原子浓度随不同实验参数的变化关系进行了研究。光电测量结果表明,当外加电压峰值或氩气流量增加时,等离子体羽发光亮度增加。当电压峰值较低时,等离子体羽的上下游在电压的每个周期均有两个光脉冲信号,且上游光信号强度比下游的大。随着电压峰值增大,上下游等离子体羽的光信号强度都增大。当电压峰值较高时,上下游等离子体羽的光信号在每个电压周期呈现三个放电脉冲。不论每个电压周期放电脉冲数目多少,上下游等离子体羽的发光信号均具有同步性。利用光谱仪采集了300~800 nm范围内上下游等离子体羽的发射光谱,发现它们中均含有OH和N2的谱线及ArⅠ和OⅠ谱线。其中,上游等离子体羽的ArⅠ谱线强度比下游的大,但OH和N2的谱线强度比下游的小。利用谱线强度比对上、下游等离子体羽的电子密度进行了研究。结果表明,上游等离子体羽的电子密度在1014 cm-3量级,高于下游羽的电子密度(1013~1014 cm-3量级)。并且,上游和下游等离子体羽的电子密度均随外加电压峰值的升高而增加,随氩气流量的增加而增加。利用光化线强度法,研究了下游羽中氧原子浓度随实验参数的变化规律。结果表明,氧原子浓度沿气流方向降低;对于一个等离子体羽,平均而言氧原子浓度随外加电压峰值升高而增加,随氩气流量增加而增加。对于以上实验现象,利用气体放电的基本理论进行了定性解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号