首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.  相似文献   

2.
The synthesis and characterization of several sterically encumbered monoterphenyl derivatives of aluminum halides and aluminum hydrides are described. These compounds are [2,6-Mes(2)C(6)H(3)AlH(3)LiOEt(2)](n)() (1), (Mes = 2,4,6-Me(3)C(6)H(2)-), 2,6-Mes(2)C(6)H(3)AlH(2)OEt(2) (2), [2,6-Mes(2)C(6)H(3)AlH(2)](2) (3), 2,6-Mes(2)C(6)H(3)AlCl(2)OEt(2) (4), [2,6-Mes(2)C(6)H(3)AlCl(3)LiOEt(2)](n)() (5), [2,6-Mes(2)C(6)H(3)AlCl(2)](2) (6), TriphAlBr(2)OEt(2) (7), (Triph = 2,4,6-Ph(3)C(6)H(2)-), [2,6-Trip(2)C(6)H(3)AlH(3)LiOEt(2)](2) (8) (Trip = 2,4,6-i-Pr(3)C(6)H(2)-), 2,6-Trip(2)C(6)H(3)AlH(2)OEt(2) (9), [2,6-Trip(2)C(6)H(3)AlH(2)](2) (10), 2,6-Trip(2)C(6)H(3)AlCl(2)OEt(2) (11), and the partially hydrolyzed derivative [2,6-Trip(2)C(6)H(3)Al(Cl)(0.68)(H)(0.32)(&mgr;-OH)](2).2C(6)H(6) (12). The structures of 2, 3a, 4, 6, 7, 9a, 10a, 10b, 11, and 12 were determined by X-ray crystallography. The structures of 3a, 9a, 10a, and 10b, are related to 3, 9, and 10, respectively, by partial occupation of chloride or hydride by hydroxide. The compounds were also characterized by (1)H, (13)C, (7)Li, and (27)Al NMR and IR spectroscopy. The major conclusions from the experimental data are that a single ortho terphenyl substituent of the kind reported here are not as effective as the ligand Mes (Mes = 2,4,6-t-Bu(3)C(6)H(2)-) in preventing further coordination and/or aggregation involving the aluminum centers. In effect, one terphenyl ligand is not as successful as a Mes substituent in masking the metal through agostic and/or steric effects.  相似文献   

3.
The UV absorbance and photochemical decomposition kinetics of hydrogen peroxide in borate/boric acid buffers were investigated as a function of pH, total peroxide concentration, and total boron concentration. At higher pH borate/boric acid inhibits the photodecomposition of hydrogen peroxide (molar absorptivity and quantum yield of H(2)O(2) and HO(2) (-), (19.0+/-0.3) M(-1) cm(-1) and 1, and (237+/-7) M(-1) cm(-1) and 0.8+/-0.1, respectively). The results are consistent with the equilibrium formation of the anions monoperoxoborate, K(BOOH)=[H(+)][HOOB(OH)(3) (-)]/([B(OH)(3)][H(2)O(2)]), 2.0 x 10(-8), R. Pizer, C. Tihal, Inorg. Chem. 1987, 26, 3639-3642, and monoperoxodiborate, K(BOOB)=[BOOB(2-)]/([B(OH)(4) (-)][HOOB(OH)(3) (-)]), 1.0+/-0.3 or 4.3+/-0.9, depending upon the conditions, with molar absorptivity, (19+/-1) M(-1) cm(-1) and (86+/-15) M(-1) cm(-1), respectively, and respective quantum yields, 1.1+/-0.1 and 0.04+/-0.04. The low quantum yield of monoperoxodiborate is discussed in terms of the slower diffusion apart of incipient (.)OB(OH)(3) (-) radicals than may be possible for (.)OH radicals, or a possible oxygen-bridged cyclic structure of the monoperoxodiborate.  相似文献   

4.
The reaction of o-bromobenzoate (1 b) with benzaldehyde (2 a) in the presence of [NiBr(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane) and zinc powder in THF (24 hours, reflux temperature), afforded 3-phenyl-3H-isobenzofuran-1-one (3 a) in an 86 % yield. Similarly, o-iodobenzoate reacts with 2 a to give 3 a, but in a lower yield (50 %). A series of substituted aromatic and aliphatic aldehydes (2 b, 4-MeC(6)H(4)CHO; 2 c, 4-MeOC(6)H(4)CHO; 2 d, 3-MeOC(6)H(4)CHO; 2 e, 2-MeOC(6)H(4)CHO; 2 f, 4-CNC(6)H(4)CHO; 2 g, 4-(Me)(3)CC(6)H(4)CHO; 2 h, 4-C(6)H(5)C(6)H(4)CHO; 2 i, 4-ClC(6)H(4)CHO; 2 j, 4-CF(3)C(6)H(4)CHO; 2 k, CH(3)(CH(2))(5)CHO; 2 l, CH(3)(CH(2))(2)CHO) also underwent cyclization with o-bromobenzoate (1 b) producing the corresponding phthalide derivatives in moderate to excellent yields and with high chemoselectivity. Like 1 b, methyl 2-bromo-4,5-dimethoxybenzoate (1 c) reacts with tolualdehyde (2 b) to give the corresponding substituted phthalide 3 m in a 71 % yield. The methodology can be further applied to the synthesis of six-membered lactones. The reaction of methyl 2-(2-bromophenyl)acetate (1 d) with benzaldehyde under similar reaction conditions afforded six-membered lactone 3 o in a 68 % yield. A possible catalytic mechanism for this cyclization is also proposed.  相似文献   

5.
The chemical shifts, temperature coefficients and inter-residual rotating-frame Overhauser effect (ROE)s for the hydroxy protons of some alpha-(1,2)-, alpha-(1,3)- and alpha-(1,6)-linked di- and trimannosides have been measured for samples in 85% H2O/15% acetone-d6 solution. These mannosides, Manalpha(1-->2)ManalphaOMe (1) Manalpha(1-->3)ManalphaOMe (2), Manalpha(1-->6)ManalphaOMe (3), Manalpha(1-->2)Manalpha(1-->2)ManalphaOMe (4), Manalpha(1-->2)Manalpha(1-->3)ManalphaOMe (5), Manalpha(1-->2)Manalpha(1-->6)ManalphaOMe (6) and Manalpha(1-->3)[Manalpha1-->6]ManalphaOMe (7), are substructures of the N-glycan Man-9.The NMR data show that the hydration of each individual hydroxyl group in the di- and trisaccharides is very similar to the hydration of the corresponding hydroxyl in the monomeric methyl alpha-D-mannoside. No hydrogen-bond interactions were found to stabilize the conformations of the alpha-(1,2)- and alpha-(1,6)-linkages and the chemical shifts for the hydroxy proton resonances of the alpha-(1,6)-linkage indicated high-conformational flexibility. For the alpha-(1,3)-linkage, however, the downfield shift for the signal of O(2)H of the 3-substituted residue together with the ROE between this proton and H5' on the next residue suggest some weak inter-residue interactions.  相似文献   

6.
The Vilsmeier reaction of nickel(II) chlorin P6 trimethyl ester with 3-dimethyl-aminoacrolein yielded nickel(II) chlorin P6 20-(2-formylvinyl) trimethyl ester and nickel(II) chlorin P6 3-(1-hydroxyethyl)-3-devinyl-20-(2-formylvinyl) trimethyl ester. Also, the outgrowths of nickel(II) chlorin P6 20-(2-formyl) trimethyl ester and nickel(II) chlorin P6 3-(2-formylvinyl)-3-devinyl-20-(2-formyl) trimethyl ester were obtained by Vilsmeier reaction with dimethylformamide. By treating the derivatives of nickel(II) 20-(2-formyl)-chlorin and nickel(II) 3-(2-formylvinyl)-20-(2-formyl)-chlorin with trifluoracetic acid, the removal of the central nickel(II) ion was accomplished. The derivatives of 20-(2-formyl)-chlorin and 3-(2-formylvinyl)-20-(2-formyl)-chlorin demonstrated considerable bathochromic shift of the major absorption band in the red region of the optical spectrum.  相似文献   

7.
RE(C7H5O3)2(C9H6NO)配合物抗真菌作用的热动力学研究   总被引:6,自引:0,他引:6  
应用微量热法研究了配合物RE(CTH5O3)2(C9H6NO)(RE代表La,Sm和Nd)对真菌的抗菌作用。在TAM Air热导式等温微量量热仪上,分别测定了桔青霉菌和黑曲霉菌在不同浓度不同稀土配合物及空白条件下生长代谢热谱曲线,并计算得到了真菌在不同条件下的生长代谢速率常数k和传代时间G等热动力学参数。实验表明:3种稀土水杨酸8-羟基喹啉三元配合物对桔青霉菌和黑曲霉菌均有抑制作用,其抑制效果依次为:Sm(Hsal)2(hq)〉La(Hsal)2(hq)〉Nd(Hsal)2(hq)。  相似文献   

8.
The reaction of cis-[PtCl(2)(dmso)2] with ligands 4-ClC(6)H(4)CHNCH(2)C(6)H(5) (1a) and 4-ClC(6)H(4)CHNCH(2)(4-ClC(6)H(4)) (1b) in the presence of sodium acetate and using either methanol or toluene as solvent produced the corresponding five-membered endo-metallacycles [PtCl{(4-ClC(6)H(3))CHNCH(2)C(6)H(5)}{SOMe(2)}] (2a) and [PtCl{(4-ClC(6)H(3))CHNCH(2)(4'-ClC(6)H(4))}{SOMe(2)}] (2b). An analogous reaction for ligands 2,6-Cl(2)C(6)H(3)CHNCH(2)C(6)H(5) (1c) and 2,6-Cl(2)C(6)H(3)CHNCH(2)(4-ClC(6)H(4)) (1d) produced five-membered exo-metallacycles [PtCl{(2,6-Cl(2)C(6)H(3))CHNCH(2)C(6)H(4)}{SOMe(2)}] (2c) and [PtCl{(2,6-Cl(2)C(6)H(3))CHNCH(2)(4'-ClC(6)H(3))}{SOMe(2)}] (2d) when the reaction was carried out in methanol and seven-membered endo-platinacycles [PtCl{(MeC(6)H(3))ClC(6)H(3)CHNCH(2)C(6)H(4)}{SOMe(2)}] (3c) and [PtCl{(MeC(6)H(3))ClC(6)H(3)CHNCH(2)(4'-ClC(6)H(3))}{SOMe(2)}] (3d) when toluene was used as a solvent. The reaction of 2,4,6-(CH(3))(3)C(6)H(2)CHNCH(2)(4-ClC(6)H(4)) (1e) produced in both solvents an exo-platinacycle [PtCl{(2,4,6-(CH(3))(3)C(6)H(2))CHNCH(2)(4'-ClC(6)H(3))}{SO(CH(3))(2)}] (2e). Cyclometallation of 4-chlorobenzylamine was also achieved to produce compound [PtCl{(4-ClC(6)H(3))CH(2)NH(2)}{SOMe(2)}] (2g). The reactions of endo- and exo-metallacycles with phosphines evidenced the higher lability of the Pt-N bond in exo-metallacycles while a comparative analysis of the crystal structures points out a certain degree of aromaticity in the endo-metallacycle.  相似文献   

9.
3, 4-Bis (trifluoromethyl)-perfluorohexene-(3) (1) reacted with diethylamine to give the 1-N, N-diethylamino-2-pentafluoroethyl -3-trifluoromethyl-perfluoropentene-(1)(2), which was easily hydrolyzed to the corresponding N, N-diethyl-2-penta-fluoroethyl- 3-trifluoromethyl-perfluoropenteno-(2)-amide (3). When compound 1 was allowed to react with n-butyl amine at 40-50`C, the 2,3,4-tris(trifluoromethyl)-4-pentafluoroethyl-1-n-butyl-aza- cyclobutene-(2) (5) was obtained as the main product and at-30-40`C, 3,4-bis(trifluoromethyl)-4-n-butylamino-perfluorohexene-(2) (4) as the main product. The isomers 3, 4-bis(trifluoromethyl)-4-allyloxy-perfluoro-hexen-(2) (6) and 2-pentafluoroethyl-3-trifluoromethyl-3-allyloxy-perfluoropentene-(1)(7) were formed when 1 was reacted with sodium allyl alcoholate.  相似文献   

10.
The kinetics of dissociation of the mono, bis, and tris complexes of Tiron (1,2-dihydroxy-3,5-benzenedisulfonate) have been studied in acidic aqueous solutions in 1.0 M HClO(4)/NaClO(4), as a function of [H(+)] and temperature. In general, the kinetics can be explained by two reactions, (H(2)O)Fe(L)(n)(-1) + H(2)L right arrow over left arrow (H(2)O)Fe(L(n)H) + H(+) (k(n), k(-n)) and (HO)Fe(L)(n)(-1) + H(2)L right arrow over left arrow (H(2)O)Fe(L(n)H) (k(n)', k(-n)'), a rapid equilibrium, (H(2)O)Fe(L(n)H) right arrow over left arrow (H(2)O)Fe(L)(n) + H(+) (K(cn)), and the formation constant (H(2)O)Fe(L)(n)(-1) + H(2)L right arrow over left arrow (H(2)O)Fe(L)(n) + 2H(+). For n = 1, the reaction was observed at 670 nm, and at [H(+)] of 0.05-0.5 M at temperatures of 2.0, 14.0, 25.0, and 36.7 degrees C. For n = 2, the analogous conditions are 562 nm, at [H(+)] of 1.5 x 10(-3) to 1.4 x 10(-2) M at temperatures of 2.0, 9.0, and 14.0 degrees C. For n = 3, the conditions are 482 nm, at pH 4.5-5.7 in 0.02 M acetate buffer at temperatures of 1.8, 8.0, and 14.5 degrees C. The rate or equilibrium constants (25 degrees C) with DeltaH or DeltaH degrees (kcal mol(-1)) and DeltaS or DeltaS degrees (cal mol(-1) K(-1)) in brackets are as follows: for n = 1, k(1) = 2.3 M(-1) s(-1) (8.9, -27.1), k(-1) = 1.18 M(-1) s(-1) (4.04, -44.8), K(c1) = 0.96 M (-9.99, -33.6), K(f1) = 2.01 M (-5.14, -15.85); for n = 2, k(-2)/K(c2) = 1.9 x 10(7) (19.9, 41.5) and k(-2)'/K(c2) = 1.85 x 10(3) (1.4, -38.8) and a lower limit of K(c2) > 0.015 M; for n = 3, k(3) = 7.7 x 10(3) (15.8, 12.3), k(-3) = 1.7 x 10(7) (16.2, 28.9), K(c3) = 7.4 x 10(-5) M (4.1, -5.1), and K(f3) = 3.35 x 10(-8) (3.7, -21.7). From the variations in rate constants and activation parameters, it is suggested that the Fe(L)(2) and Fe(L)(3) complexes undergo substitution by dissociative activation, promoted by the catecholate ligands.  相似文献   

11.
采用热丝化学气相沉积法(HPCV),研究了N2、O2对金刚石晶形显露的影响。发现微量的氮气的加入([N2]/[CH4]<1%)有利于金刚石(100)晶面的显露,且不会降低金刚石晶形的完整性;微量氧的加入有利于金刚石(111)面显露.采用氧辅助控制金刚石膜(111)织构生长,可以使X射线(111)峰摇摆曲线的半宽降到6.2°.氮或氧的加入扩大了织构生长金刚石(100)或(111)膜的基片温度范围.  相似文献   

12.
利用IR,EXAFS, ~(13)CO同位素交换反应及与NO作用等手段研究了Pt羰基簇合物[Pt_3(CO)_6]~(2-)_n(n=3,4)在NaY分子筛超笼内的合成机理.在氧化样品Pt~(2+)/NaY上300-373 K的还愿羰基化过程中,首先Pt~(2+)与CO反应生成PtO(CO)物种(波数σ_(CO)=2110 cm~(-1)),然后聚集成“Pt_3(CO)_6”(σ_(CO)=2112,1896和1841 cm~(-1)),最后生成深绿色的Pt羰基簇合物Pt_(12)(CO)_(24)]~(2-)/NaY(σ_(CO)=2080,1824 cm~(-1)).“Pt_3(CO)_6”的羰基在室温下能迅速地与~(13)CO发生交换,而[Pt_3(CO)_6]~(2-)_n(n=3,4)的羰基与~(13)CO的同位素交换即使在343 K也进行得很慢,室温下,NO能逐步破坏Pt羰基簇合物的层间和层内Pt-Pt键,得到中间物种“Pt_3(CO)_6”和PtO(CO),同时在气相产生CO_2和N_2O.而由上述两中间物种出发,300-353 K温度下,在CO气氛中的还原羰基化又能可逆地得到原羰基簇合物.  相似文献   

13.
When triisobutylaluminum (AliBu(3)) is added to solutions containing methylaluminoxane (MAO) and rac-[Me(2)Si(ind)(2)ZrCl(2)] (ind: indenyl) in C(6)D(6), NMR spectra show that methyl-bridged mixed-alkylaluminum dimers Al(mu-Me)(2)Me(4-x)iBu(x) predominate. These dimers react with MAO under partial transfer of isobutyl groups and induce a conversion of the initially prevailing cationic trimethylaluminum adduct rac-[Me(2)Si(ind)(2)Zr(mu-Me)(2)AlMe(2) (+)] to rac-[Me(2)Si(ind)(2)Zr(mu-Me)(2)AlMeiBu(+)] and rac-[Me(2)Si(ind)(2)Zr(mu-Me)(2)AliBu(2) (+)]. These species are unstable and release isobutene under formation of zirconocene hydrides.  相似文献   

14.
Hydride complexes IrHCl(2)(PiPr(3))P(2) (1) and IrHCl(2)P(3) (2) [P = P(OEt)(3) and PPh(OEt)(2)] were prepared by allowing IrHCl(2)(PiPr(3))(2) to react with phosphite in refluxing benzene or toluene. Treatment of IrHCl(2)P(3), first with HBF(4).Et(2)O and then with an excess of ArCH(2)N(3), afforded benzyl azide complexes [IrCl(2)(eta(1)-N(3)CH(2)Ar)P(3)]BPh(4) (3, 4) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); P = P(OEt)(3), PPh(OEt)(2)]. Azide complexes reacted in CH(2)Cl(2) solution, leading to the imine derivative [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}P(3)]BPh(4) (5). The complexes were characterized by spectroscopy and X-ray crystal structure determination of [IrCl(2)(eta(1)-N(3)CH(2)C(6)H(5)){P(OEt)(3)}(3)]BPh(4) (3a) and [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}{P(OEt)(3)}(3)]BPh(4) (5a). Both solid-state structure and (15)N NMR data indicate that the azide is coordinated through the substituted Ngamma [Ir]-Ngamma(CH(2)Ar)NNalpha nitrogen atom.  相似文献   

15.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

16.
研究了酸性介质中五价钒氧离子(VO)、强碱性阴离子交换树脂负载钒(V)(BAEV)、硫酸氧钒(VOSO4)、杨梅形聚羧酸氧钒(IV)(APCV)、杨酸形聚亚氨二乙酸氧钒(IV)(APIV)、杨梅形聚得偕亚氨二乙酸氧钒(IV)(APOV)、笼形聚羧酸氧钒(IV)(CPCV)和笼形聚肟偕亚氨二乙酸氧钒(IV)(CPOV)等与硫脲(TU)配住生成活性种并引发丙烯腈(AN)聚合反应。表观聚合速度(Rp)分别是:VO-TU:Rp=2.8X105e-14200/RTC2.2'(AN)c.20(HNO3)c0(V5+)c1.3(TU)BAEV-TU:Rp=1.9X104e-6860/RTc1.2(AN)c1.0'(HNO3)c0.44(PV)c1.0(TU)VOSO4-TU:Rp=0APCV-TU:Rp=2.3X104e-4100/Rtc1.5(AN)c1.5(HNO3)c0.5(PV)c2.0(TU)APIV-TU:RP=2.2X105e-6860/RTc1.0(AN)c2.0(H2SO4)c0.5(PV)c1.5(TU)APOV-TU:RP=1.9X108e-10800/RTc.10(AN)c1.0(HNO3)c0.6(PV)c1.5(TU)CPCV-TU:Rp=9.7X105e-10500/RTc1.0(AN)c1.5(HNO3)c0.5(PV)c0.76(TU)CPOV-TU:Rp=1.0X108e-10500/RTc1.0(AN)c3.0(HNO3)c1.0(PV)c1.5(TU)根据实验结果,认为:(一)钒化合物与硫脲在酸性介质中通过“逐步配位—质子转移”机理产生引发种;(二)钒络合物及其活化后所产生的阳离子自由基(i=0,1,2,…,n)处于大分子引力场内进行链引发,在某些情况下,原地进行键增长反  相似文献   

17.
Halfen JA  Moore HL  Fox DC 《Inorganic chemistry》2002,41(15):3935-3943
We report the synthesis, structural and spectroscopic characterization, and magnetic and electrochemical studies of a series of iron(II) complexes of the pyridyl-appended diazacyclooctane ligand L(8)py(2), including several that model the square-pyramidal [Fe(II)(N(his))(4)(S(cys))] structure of the reduced active site of the non-heme iron enzyme superoxide reductase. Combination of L(8)py(2) with FeCl(2) provides [L(8)py(2)FeCl(2)] (1), which contains a trigonal-prismatic hexacoordinate iron(II) center, whereas a parallel reaction using [Fe(H(2)O)(6)](BF(4))(2) provides [L(8)py(2)Fe(FBF(3))]BF(4) (2), a novel BF(4)(-)-ligated square-pyramidal iron(II) complex. Substitution of the BF(4)(-) ligand in 2 with formate or acetate ions affords distorted pentacoordinate [L(8)py(2)Fe(O(2)CH)]BF(4) (3) and [L(8)py(2)Fe(O(2)CCH(3))]BF(4) (4), respectively. Models of the superoxide reductase active site are prepared upon reaction of 2 with sodium salts of aromatic and aliphatic thiolates. These model complexes include [L(8)py(2)Fe(SC(6)H(4)-p-CH(3))]BF(4) (5), [L(8)py(2)Fe(SC(6)H(4)-m-CH(3))]BF(4) (6), and [L(8)py(2)Fe(SC(6)H(11))]BF(4) (7). X-ray crystallographic studies confirm that the iron(II)-thiolate complexes model the square-pyramidal geometry and N(4)S donor set of the reduced active site of superoxide reductase. The iron(II)-thiolate complexes are high spin (S = 2), and their solutions are yellow in color because of multiple charge-transfer transitions that occur between 300 and 425 nm. The ambient temperature cyclic voltammograms of the iron(II)-thiolate complexes contain irreversible oxidation waves with anodic peak potentials that correlate with the relative electron donating abilities of the thiolate ligands. This electrochemical irreversibility is attributed to the bimolecular generation of disulfides from the electrochemically generated iron(III)-thiolate species.  相似文献   

18.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

19.
The titanium complex [(C(5)H(4)bond;allyl)TiCl(3)] (2) undergoes olefin metathesis coupling when treated with 3 mol % of [Cl(2)(L(1))(L(2))Ru=CHPh] (L(1)=L(2)=PCy(3), 4 a; L(1)=PCy(3), L(2)=(H(2)IMes), 4 b) to yield the dimetallic complex [Cl(3)Ti(C(5)H(4))-CH(2)CH=CHCH(2)-(C(5)H(4))TiCl(3)] (5). The allyl-substituted titanocene complex [Cp(C(5)H(4)bond;allyl)TiCl(2)] (3) analogously yields the dimetallic system 6 when treated with 4. The ansa-zirconocene complex [Me(2)Si(C(5)H(4))(C(5)H(3)bond;allyl)ZrCl(2)] (7) cleanly yields the analogous dimetallic coupling product 8 (>95 % isomerically pure), when treated with catalytic amounts of 4 b in toluene. Complex 8 gives an active homogeneous ethene or propene polymerization catalyst, especially at elevated temperatures, when treated with excess methylalumoxane.  相似文献   

20.
设计了两种新的具有螯形骨架的主体分子反式-1,2-二苯基-1,2-苊二醇(1)和顺式-1,2-二(1'-萘基)-1,2-苊二醇(2),主体(1),(2)可与许多有机小分子化合物形成配位包合物。用IR和粉末XRD表征了主体分子(1)和(2)的包结物,用^1NMR测定了包结物的主客体分子摩尔比:(1)·DMF(1:2),(1)·DMSO(1:2),(1)·THF(1:2),(1)·二氧六环(1:1),(1)·吡啶(1:1),(2)·DMF(1:1)和(2)·DMSO(1:1)。单晶X射线衍射分析了包结物的晶体结构,(1)·DMF:空间群Pnaa,a=0.9377(1)nm,b=1.4351(1)nm,c=4.0463(3)nm;(1)·DMSO:空间群Pbcn,a=1.6278(1)nm,b=1.0751(1)nm,c=1.4980(1)nm;(2)·DMF:P2~1/n,a=0.9796(1)nm,b=1.2377(1)nm,c=2.2344(3)nm,β=93.02(1)°;游离主体(1):空间群P1,a=1.0461(1)nm,b=1.1213(1)nm,c=1.5496(1)nm,α=81.74(1)°,β=75.71(1)°,γ=89.00(1)°;分析了主体分子的刚性和柔韧性对包结性能的影响。并研究了主体分子(1)选择分离细辛挥发油,将顺甲基异丁香酚从挥发油中分离出来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号