首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用多接收等离子体质谱(MC-ICP-MS)方法高精度测定了Hg同位素组成.本方法借助在线进样系统,最大程度上克服了同位素干扰和基体效应;采用同位素内标法和样品-标准交叉法以消除仪器自身的质量分馏;通过实验条件(如测定时间、进样量等)的优化,方法的内精度显著提高.研究表明: 为保证汞同位素组成的高精度测定,汞最低进样浓度为2 μg/L时,内精度<0.02‰(RSD).运用本方法对汞标准NIST SRM 3133和UM-Almadén实验室内标样长达7个月的测定,结果表明,本方法外精度<0.06‰(2SD).此外,对一系列环境样品的同位素组成进行了测定,样品的外精度<0.10‰(2SD).测定样品δ202Hg变化范围为-3.48‰~0 63‰, 幅度达4.11‰.  相似文献   

2.
氨基酸稳定氮同位素(δ15 N)分析能准确有效地评估生物体的营养级以及氮在食物链中的流动.本研究优化了氨基酸氮同位素的分析方法:样品在酸性条件下水解后,释放出的蛋白质氨基酸经阳离子交换树脂纯化后,衍生为对应的N-新戊酞基,O-异丙醇(N-pivaloyl-isopropyl,NPP)酯,利用气相色谱-燃烧-同位素比值质谱仪(Gas chromatography-combustion-isotope ratio mass spectrometry,GC-C-IRMS)测定其δ15 N.经非极性气相色谱柱DB-5ms分离后,13种氨基酸NPP酯衍生物均可得到良好的基线分离.在样品量不低于20 ng N条件下,GC-C-IRMS方法的精密度优于1‰,测得的δ15 N值与EA-IRMS法测得的δ15 N值没有明显差异.阳离子树脂纯化前后各氨基酸δ15 N值差异低于1‰,表明没有产生明显的同位素分馏.采用本方法成功地估算了阿哈湖生态系统中常见水生生物的营养级,可作为研究氨基酸代谢以及生态系统特征的新方法.  相似文献   

3.
艾国民  郑海燕  张敏  刘志培 《分析化学》2011,39(8):1141-1146
以好氧反硝化菌-产碱杆菌(Alcaligenes faecalis)在15N-KN03标记反硝化培养下所产气体与培养管中空气的混合气体为分析对象,在样品中N2/O2,CO2,N2O,H2O基线分离的基础上,利用气相色谱-同位素比质谱对混合气体中N2进行高精密度的δ15N分析,同时利用气相色谱-质谱联用的选择离子模式对混...  相似文献   

4.
申请公布号:CN104181247A
  申请公布日:2014.12.03
  申请人:中国科学院海洋研究所
  摘要:本发明属于水体硝酸盐污染治理与控制技术领域,是一种海水硝酸盐氮氧稳定同位素测定的方法。利用无N2O还原酶活性的反硝化细菌将待测海水中硝酸盐进行离线处理后转化为氧化亚氮气体,使用痕量气体预浓缩装置(Precon)–气相色谱(GC)–同位素比质谱仪(MS)联机进行氮氧稳定同位素的在线连续测定。本发明优化了反硝化细菌培养方法,改进培养基配方,不再添加硝酸盐,培养效果更佳,细菌生长稳定,无需检验富集培养后的培养基是否残留硝酸盐,不会对后续样品处理造成污染;该培养基细菌富集效果好,细菌培养周期短、效率高,并且降低了培养成本。一种连翘叶中连翘酯苷A和连翘苷含量的测定方法。  相似文献   

5.
建立了15N标记的小麦植株各器官中δ~(15)N值的元素分析仪-同位素比质谱仪联用技术(EA-IRMS)的测定方法.对仪器的稳定性和线性进行了条件优化,标准气N_2的同位素比值的标准偏差为0.03‰,在同位素信号值1e~(-9)~1e~(-8)A范围内,总体线性为0.009‰/n A.称取不同量的小麦粉标准物质(OAS/Isotope)测定δ~(15)N值,进样量为4 mg时标准偏差最小,为最佳称样量.对硫酸铵标准物质(IAEA-N2-6)、小麦粉标准物质和~(15)N标记小麦植株样品各器官进行测定,δ~(15)N值的标准偏差均小于5%,测定精度和准确度较好.方法为研究氮素在小麦体内运转及利用效率提供了有效的技术手段.  相似文献   

6.
唐爱玲  瞿建国 《分析化学》2013,(7):1091-1096
在中分辨模式(m/Δm=4000)下,利用扇形磁场电感耦合等离子体质谱仪(SF-ICP-MS)建立了精确测定硫同位素组成的方法,对ICP离子源、光学透镜系统、数据获取参数(扫描时间、扫描次数、积分窗口等)以及浓度效应进行了系统优化和评估,并用"标准-样品"交叉法校正仪器自身的质量歧视。在此基础上,在不同日期重复测定了GBW04414和GBW04415硫同位素参考物质的δ34SV-CDT,分别为"0.01‰±0.31‰和22.15‰±0.42‰,误差<±0.06‰,精密度<±0.5‰(n=10),达到了目前同类方法所报道的最高水平。同时,对瓶装矿泉水、雨水和河水等天然水样中δ34S进行了测定,测定精密度为±0.19‰~±0.58‰,与同位素参考物质的测定精密度相近。因此,本方法可用于精确测定天然水样中S同位素组成。  相似文献   

7.
研究了GC–IRMS联用技术测定烃类气体碳氢稳定同位素的方法。利用气相色谱仪将烃类气体各组分分开,通过高温燃烧/裂解转化为CO2和H2,然后导入MAT–253稳定同位素质谱仪进行测试。用该方法测试的标准甲烷气体碳、氢同位素值和其标定值一致,测定结果的相对标准偏差分别为0.222‰和0.950‰。用该法测定了广东沿海珠江口盆地东部海域首次钻获的高纯度天然气水合物样品所释放的烃类气体碳氢稳定同位素值,其中δ13C为–69.78‰(VPDB),δD为–184.4‰(VSMOW)。GC–IRMS法精确度高,可用范围广,适用于海洋天然气水合物样品所释放烃类气体碳氢同位素的测定。  相似文献   

8.
建立了元素分析-稳定同位素质谱(EA-IRMS)同时测定原料奶粉中δ13 C/δ15 N的检测方法。该方法稳定性(标准偏差):参考气体δ13 C<0.02‰/δ15 N<0.04‰、实际样品δ13C<0.18‰/δ15 N<0.06‰;线性(斜率):参考气体δ13 C<0.04/δ15 N<0.01,实际样品δ13C<0.04/δ15 N<0.01,长期稳定性能满足以上指标。对来源各异的原料乳粉(含半成品原料、牛初乳粉)持续性的检测结果表明,多种原料乳粉均有各自稳定且差异性显著的δ13 C区间:新西兰(-26‰~-29‰)、澳大利亚(-26‰~-27‰)、美国(-16‰)、丹麦(-22‰~-24‰)、内蒙古(-25‰)、新疆/宁夏(-17‰~-22‰)。同时在半成品原料乳粉中,δ13C值在1段到3段呈现规律性变大的趋势,而δ15 N无明显变化,多集中在6‰~8‰这一区间。对部分原料乳粉中可能非法加入的,用以提高乳粉中氮含量的外源物质进行测定发现,常见化工类高氮化合物如尿素、三聚氰胺δ15 N为负值,与原料奶粉及其他蛋白类高氮物有显著差异。将三聚氰胺作为添加物,按提高蛋白含量10%的比例加入某一原料乳粉中,经过此方法检测,发现其δ15 N从6.344‰降至5.660‰。EA-IRMS技术具有较好的稳定性和重现性,降低了操作难度和成本,可以应用到企业中作为监控原料乳粉来源和质量品质稳定性的方法。  相似文献   

9.
利用元素分析-同位素比质谱仪(EA-IRMS)测定了来自美国、巴西、阿根廷和加拿大产的60份大豆样品中水溶性蛋白质的δ^(13)C、δ^(15)N、δ^(18)O和δ^(2)H值,采用OPLS-DA统计分析方法构建大豆产地溯源模型。大豆水溶性蛋白质δ^(13)C、δ^(15)N、δ^(18)O和δ^(2)H值分别为-24.675‰~-29.490‰,-1.595‰~2.537‰,15.749‰~25.127‰,-33.504‰~-118.697‰。比较PCA和OPLS-DA两种统计分析方法显示,OPLS-DA统计分析方法建立的大豆产地溯源鉴别模型识别准确率更高,δ^(15)N、δ^(2)H、δ^(18)O和δ^(13)C在溯源模型中对产地识别的贡献度VIP值分别为1.069,1.045,1.035,0.834。大豆水溶性蛋白质δ^(13)C、δ^(15)N、δ^(18)O和δ^(2)H产地溯源OPLS-DA模型可鉴别美国、加拿大、巴西和阿根廷四个国家生产的大豆样品,在此基础上构建美国与其他3个国家的两两产地识别模型,可准确鉴别美国产大豆,识别准确率为100%。该研究方法和所构建的模型可应用于美国、巴西、阿根廷和加拿大产大豆的产地溯源。  相似文献   

10.
<正>申请公布号:CN104181247A申请公布日:2014.12.03申请人:中国科学院海洋研究所摘要:本发明属于水体硝酸盐污染治理与控制技术领域,是一种海水硝酸盐氮氧稳定同位素测定的方法。利用无N2O还原酶活性的反硝化细菌将待测海水中硝酸盐进行离线处理后转化为氧化亚氮气体,使用痕量气体预浓缩装置  相似文献   

11.
Xing M  Liu W 《Analytica chimica acta》2011,686(1-2):107-114
Nitrate nitrogen and oxygen isotopes have been widely used to trace the nitrogen biogeochemical cycle by identifying NO(3)(-) sources. An improved method of anion exchange was developed to measure δ(15)N-NO(3)(-) in fresh water by continuous-flow elemental analyzer/isotope ratio mass spectrometry (EA-IRMS). We used a custom-built exchange resin column, a peristaltic pump and the oven-drying method in our experiments. Consequently, the amount of Ag(2)O used as a neutralizer was reduced, time was saved, and operation became simpler than before. Meanwhile, analytical precision remained identical to previous studies. KNO(3) solutions were prepared at 0.2, 5 and 25 mg-N L(-1) from KNO(3) standard salt (δ(15)N=+6.27‰), and the average δ(15)N values of the solutions after having been absorbed on and subsequently stripped from anion columns were +6.62±0.22‰ (n=6), +6.38±0.09‰ (n=6), and +6.26±0.07‰ (n=6), respectively. In addition, the "natural" water sample δ(15)N-NO(3)(-) showed consistency in comparison to standards, and the mean standard deviation by the different approaches was 0.08‰. Accordingly, by these improvements the anion exchange resin technique is demonstrated to be more suitable for measuring δ(15)N in NO(3)(-) than original techniques.  相似文献   

12.
Zhang  Zhongyi  Xiao  Huayun  Zheng  Nengjian  Gao  Xiaofei  Zhu  RenGuo 《Chromatographia》2016,79(17):1197-1205

Individual free amino acid δ15N values in plant tissue reflect the metabolic pathways involved in their biosynthesis and catabolism and could thus aid understanding of environmental stress and anthropogenic effects on plant metabolism. In this study, compound-specific nitrogen isotope analysis of amino acid by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was carried out to determine individual free amino acid δ15N values. High correlations were observed between the δ15N values obtained by GC-C-IRMS and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) determinations, and the mean precision measured was better than 1 ‰. Cation-exchange chromatography was employed to purify the sample, and the difference between prior to and following passage through the resin was within 1 ‰. The amino acid δ15N values of plant leave samples following incubation in 15N-nitrate at different time points were determined. A typical foliar free amino acid 15N-enrichment pattern was found, and glutamine was the most rapidly labeled amino acid; other amino acids derived from the GS-GOGAT cycle were also enriched. The pyruvate family amino acids were labeled less quickly followed by the aromatic amino acids. This study highlighted that amino acid metabolism pathways had a major effect on the δ15N values. With the known amino acid metabolism pathways and δ15N values determined by the presented method, the influence of various external factors on the metabolic cycling of amino acid can be understood well.

  相似文献   

13.
We investigate the effect of acid treatment methods on δ(15)N values from a range of environmental organic materials in the context of the increased application of 'dual-mode' isotope analysis (the simultaneous measurement of δ(13)C and δ(15)N from the same acid-treated sample). Three common methods are compared; (i) untreated samples; (ii) acidification followed by sequential water rinse (rinse method); and (iii) acidification in silver capsules (capsule method). The influence of capsule type (silver and tin) on δ(15)N is also independently assessed (as the capsule and rinse methods combust samples in different capsules; silver and tin, respectively). We find significant differences in δ(15)N values between methods and the precision of any one method varies significantly between sample materials and above the instrument precision (>0.3‰). The δ(15)N values of untreated samples did not produce the most consistent data on all sample materials. In addition, the capsule type appears to influence the measured δ(15)N value of some materials, particularly those combusted only in silver capsules. We also compare the new δ(15)N data with previously published δ(13)C data on the same materials. The response of δ(13)C and δ(15)N within and between methods and sample materials to acidification appears to be relatively disproportionate, which can influence the environmental interpretation of the measured data. In addition, statistical methods used to estimate inorganic nitrogen are shown to be seriously flawed.  相似文献   

14.
Mid-summer N(2) profiles were analyzed from nine oxygen-stratified, humic-acid-rich lakes using a continuous flow isotope ratio mass spectrometer and a Gasbench II device. Sample preparation steps were performed under water to avoid air contamination. The instrument precision for the δ(15)N measurement was high (0.03‰), but for the whole sampling and analysis procedure the mean deviation between replicate samples was 0.13‰ for the δ(15)N measurements and 5.5% for the N(2) gas concentration analysis. The results show that the Gasbench peripheral was suitable for measurement of the (15)N natural abundance of dissolved nitrogen gas, with denitrification indicated by the oversaturation and slightly (<1‰) depleted δ(15)N values of the dissolved N(2) gas in the suboxic zones of some of the study lakes. Calculated values for the denitrified (excess) N(2) varied between -5.3 and 0.7‰. The denitrification potential was determined using the (15)N tracer method, with results showing nitrate-inducible denitrification and no signs of anaerobic ammonium oxidation (anammox).  相似文献   

15.
Natural 15N abundances (δ15N values) of different soil nitrogen pools deliver crucial information on the soil N cycle for the analysis of biogeochemical processes. Here we report on a complete suite of methods for sensitive δ15N analysis in soil extracts. A combined chemical reaction of vanadium(III) chloride (VCl3) and sodium azide under acidic conditions is used to convert nitrate into N2O, which is subsequently analyzed by purge‐and‐trap isotope ratio mass spectrometry (PTIRMS) with a cryo‐focusing unit. Coupled with preparation steps (microdiffusion for collection of ammonium, alkaline persulfate oxidation to convert total dissolved N (TDN) or ammonium into nitrate) this allows the determination of the δ15N values of nitrate, ammonium and total dissolved N (dissolved organic N, microbial biomass N) in soil extracts with the same basic protocol. The limits of quantification for δ15N analysis with a precision of 0.5‰ were 12.4 µM for ammonium, 23.7 µM for TDN, 16.5 µM for nitrate and 22.7 µM for nitrite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

17.
We report the first high‐precision characterization of molecular and intramolecular δ15N of nucleosides derived from mammalian DNA. The influence of dietary protein level on brain amino acids and deoxyribonucleosides was determined to investigate whether high protein turnover would alter amino acid 15 N or 13 C values. Pregnant guinea pig dams were fed control diets, or high or low levels of dietary protein throughout gestation, and all pups were fed control diets. The cerebellar DNA of offspring was extracted at 2 and 120 days of life, nucleosides isolated and δ15N and δ13C values characterized. Mean diet δ15N was 0.45 ± 0.33‰, compared with cerebellar whole tissue and DNA δ15N = +4.1 ± 0.7‰ and ?4.5 ± 0.4‰, respectively. Cerebellar deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), and deoxyguanosine (dG) δ15N were +1.4 ± 0.4, –2.1 ± 0.9, –7.2 ± 0.3, and ?10.4 ± 0.5‰, respectively. There were no changes in amino acid or deoxyribonucleoside δ15N values due to dietary protein level. Using known metabolic relationships, we developed equations to calculate the intramolecular δ15N values originating from aspartate (asp) in purines (pur) or pyrimidines (pyr), glutamine (glu), and glycine (gly) to be δ15NASP‐PUR, δ15NASP‐PYR, δ15NGLN, and δ15NGLY +11.9 ± 2.3‰, +7.0 ± 2.0‰, –9.1 ± 2.4‰, and ?31.8 ± 8.9‰, respectively. A subset of twelve amino acids from food and brain had mean δ15N values of 4.3 ± 3.2‰ and 13.8 ± 3.1‰, respectively, and δ15N values for gly and asp were 12.6 ± 2.2‰ and 15.2 ± 0.8‰, respectively. A separate isotope tracer study detected no significant turnover of cerebellar DNA in the first six months of life. The large negative δ15N difference between gly and cerebellar purine N at the gly (7) position implies either that there is a major isotope effect during DNA synthesis, or that in utero gly has a different isotope ratio during rapid growth and metabolism from that in adult life. Our data show that cerebellar nucleoside intramolecular δ15N values vary over more than 40‰ and are not influenced by dietary protein level or age. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes the establishment of a robust method to determine compound specific δD and δ(13)C values of volatile organic compounds (VOCs) in a standard mixture ranging between C(6) and C(10) and was applied to various complex emission samples, e.g. from biomass combustion and car exhaust. A thermal desorption (TD) unit was linked to a gas chromatography isotope ratio mass spectrometer (GC-irMS) to enable compound specific isotope analysis (CSIA) of gaseous samples. TenaxTA was used as an adsorbent material in stainless steel TD tubes. We determined instrument settings to achieve a minimal water background level for reliable δD analysis and investigated the impact of storage time on δD and δ(13)C values of collected VOCs (176 days and 40 days of storage, respectively). Most of the standard compounds investigated showed standard deviations (SD)<6‰ (δD) when stored for 148 days at 4 °C. However, benzene revealed occasionally D depleted values (21‰ SD) for unknown reasons. δ(13)C analysis demonstrated that storage of 40 days had no effect on VOCs investigated. We also showed that breakthrough (benzene and toluene, 37% and 7%, respectively) had only a negligible effect (0.7‰ and 0.4‰, respectively) on δ(13)C values of VOCs on the sample tube. We established that the sample portion collected at the split flow effluent of the TD unit can be used as a replicate sample for isotope analysis saving valuable sampling time and resources. We also applied TD-GC-irMS to different emission samples (biomass combustion, petrol and diesel car engines exhaust) and for the first time δD values of atmospheric VOCs in the above range are reported. Significant differences in δD of up to 130‰ were observed between VOCs in emissions from petrol car engine exhaust and biomass combustion (Karri tree). However, diesel car emissions showed a high content of highly complex unresolved mixtures thus a baseline separation of VOCs was not achieved for stable hydrogen isotope analysis. The ability to analyse δD by TD-GC-irMS complements the characterisation of atmospheric VOCs and is maybe used for establishing further source(s).  相似文献   

19.
Accurate determination of lithium (Li)isotopic composition in natural geological samples is the basis for Li isotope geochemical studies. In this study, a method contained preparation of geological materials (water and rock) and accurate determination of Li isotopic composition was set up. The separation of Li from water and rock samples was implemented by a single column containing 1.5 mL of Bio-Rad AG 50W-X12 (200–400 mesh) resin, with 0.40 M HCl and 1.0 M HCl as eluents. Only 8.5 and 14 mL of eluents were used to separate Li from water and rock samples with this method, respectively. Blank signal of the operation procedure was (2.4 ± 0.1) mV, which was almost same as the 2.3 mV of the 2% HNO3 signal used in this study. Experimental results showed that Li isotopic fractionation during leaching process was significant and deviation of δ7Li values in these samples with incompletely recovered Li reached up to 50‰. Lithium isotopic ratios were determined by multi-collector ICP-MS (Nu Plasma II) using the sample standard bracketing (SSB) method. L-SVEC standard with similar Li concentration to samples (about 80 ng mL?1) was used in this study. The external precision (2σ) of this technique, determined by repeated measurement of pure Li standard solutions and seawater was < ±0.8‰. The measured δ7Li values of seawater and rock standards AGV-2, BCR-2 and GSP-2 were +31.4‰ ± 0.7‰ (n = 18), +7.23‰ ± 0.16‰ (n = 4), +3.7‰ ± 0.7‰ (n = 8) and ?0.10‰ ± 0.18‰ (n = 4), respectively, similar to previously published values. This method could be used to accurately determine Li isotopic composition of various types of geological samples such as waters and rocks. The advantage of this method was that the amount of resin and reagent was reduced to 50% or less of the previous studies, thereby significantly improving the work efficiency and reducing the operation procedure blank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号