首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 μmol.mL(-1) in samples of biological origin.  相似文献   

2.
It is well known that N(2) in the ion source of a mass spectrometer interferes with the CO background during the δ(18)O measurement of carbon monoxide. A similar problem arises with the high-temperature conversion (HTC) analysis of nitrogenous O-bearing samples (e.g. nitrates and keratins) to CO for δ(18)O measurement, where the sample introduces a significant N(2) peak before the CO peak, making determination of accurate oxygen isotope ratios difficult. Although using a gas chromatography (GC) column longer than that commonly provided by manufacturers (0.6 m) can improve the efficiency of separation of CO and N(2) and using a valve to divert nitrogen and prevent it from entering the ion source of a mass spectrometer improved measurement results, biased δ(18)O values could still be obtained. A careful evaluation of the performance of the GC separation column was carried out. With optimal GC columns, the δ(18)O reproducibility of human hair keratins and other keratin materials was better than ± 0.15 ‰ (n=5; for the internal analytical reproducibility), and better than ± 0.10 ‰ (n=4; for the external analytical reproducibility).  相似文献   

3.
Ginseng is a health food and traditional medicine highly valued in Asia. Ginseng from certain origins is higher valued than from other origins, so that a reliable method for differentiation of geographical origin is important for the economics of ginseng production. To discriminate between ginseng samples from South Korea and PR China, 29 samples have been analyzed for the isotopic composition of the elements H, C and N. The results showed δ(2)H values between -94 and -79‰, for δ(13)C -27.9 to -23.7‰ and for δ(15)N 1.3-5.4‰ for Chinese ginseng. Korean ginseng gave δ(2)H ratios between -91 and -69‰, δ(13)C ratios between -31.2 and -22.4‰ and δ(15)N ratios between -2.4 and +7‰. Despite the overlap between the values for individual isotopes, a combination of the isotope systems gave a reasonable differentiation between the two geographic origins. Especially the statistically significant difference in δ(2)H ratios facilitated the differentiation between Korean and Chinese ginseng samples.  相似文献   

4.
The present study was aimed to investigate the variation of stable isotopic ratios of carbon, nitrogen, hydrogen, and oxygen in wheat kernel along with different processed fractions from three geographical origins across 5 years using isotope ratio mass spectrometry (IRMS). Multiway ANOVA revealed significant differences among region, harvest year, processing, and their interactions for all isotopes. The region contributed the major variability in the δ13C ‰, δ2H ‰, δ15N ‰, and δ18O‰ values of wheat. Variation of δ13C ‰, δ15N ‰, and δ18O ‰ between wheat whole kernel and its products (break, reduction, noodles, and cooked noodles) were ?0.7‰, and no significant difference was observed, suggesting the reliability of these isotope fingerprints in geographical traceability of wheat‐processed fractions and foods. A significant influence of wheat processing was observed for δ2H values. By applying linear discriminant analysis (LDA) to the whole dataset, the generated model correctly classified over 91% of the samples according to the geographical origin. The application of these parameters will assist in the development of an analytical control procedure that can be utilized to control the mislabeling regarding geographical origin of wheat kernel and its products.  相似文献   

5.
Natural 15N abundances (δ15N values) of different soil nitrogen pools deliver crucial information on the soil N cycle for the analysis of biogeochemical processes. Here we report on a complete suite of methods for sensitive δ15N analysis in soil extracts. A combined chemical reaction of vanadium(III) chloride (VCl3) and sodium azide under acidic conditions is used to convert nitrate into N2O, which is subsequently analyzed by purge‐and‐trap isotope ratio mass spectrometry (PTIRMS) with a cryo‐focusing unit. Coupled with preparation steps (microdiffusion for collection of ammonium, alkaline persulfate oxidation to convert total dissolved N (TDN) or ammonium into nitrate) this allows the determination of the δ15N values of nitrate, ammonium and total dissolved N (dissolved organic N, microbial biomass N) in soil extracts with the same basic protocol. The limits of quantification for δ15N analysis with a precision of 0.5‰ were 12.4 µM for ammonium, 23.7 µM for TDN, 16.5 µM for nitrate and 22.7 µM for nitrite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
氨基酸稳定氮同位素(δ15 N)分析能准确有效地评估生物体的营养级以及氮在食物链中的流动.本研究优化了氨基酸氮同位素的分析方法:样品在酸性条件下水解后,释放出的蛋白质氨基酸经阳离子交换树脂纯化后,衍生为对应的N-新戊酞基,O-异丙醇(N-pivaloyl-isopropyl,NPP)酯,利用气相色谱-燃烧-同位素比值质谱仪(Gas chromatography-combustion-isotope ratio mass spectrometry,GC-C-IRMS)测定其δ15 N.经非极性气相色谱柱DB-5ms分离后,13种氨基酸NPP酯衍生物均可得到良好的基线分离.在样品量不低于20 ng N条件下,GC-C-IRMS方法的精密度优于1‰,测得的δ15 N值与EA-IRMS法测得的δ15 N值没有明显差异.阳离子树脂纯化前后各氨基酸δ15 N值差异低于1‰,表明没有产生明显的同位素分馏.采用本方法成功地估算了阿哈湖生态系统中常见水生生物的营养级,可作为研究氨基酸代谢以及生态系统特征的新方法.  相似文献   

7.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

8.
Currently, bacterial denitrification is becoming the accepted method for δ15N‐ and δ18O‐NO determination. However, proper correction methods with international references (USGS32, USGS34 and USGS35) are needed. As a consequence, it is important to realize that the corrected isotope values are derived from a combination of several other measurements with associated uncertainties. Therefore, it is necessary to consider the propagated uncertainty on the final isotope value. This study demonstrates how to correctly estimate the uncertainty on corrected δ15N‐ and δ18O‐NO values using a first‐order Taylor series approximation. The bacterial denitrification method errors from 33 batches of 561 surface water samples varied from 0.2 to 2.1‰ for δ15N‐NO and from 0.7 to 2.3‰ for δ18O‐NO, which is slightly wider than the machine error, which varied from 0.2 to 0.6‰ for δ15N‐N2O and from 0.4 to 1.0‰ for δ18O‐N2O. The overall uncertainties, which are composed of the machine error and the method error, for the 33 batches ranged from 0.3 to 2.2‰ for δ15N‐NO and from 0.8 to 2.5‰ for δ18O‐NO. In addition, the mean corrected δ15N and δ18O values of 132 KNO3‐IWS (internal working standard) measurements were computed as 8.4 ± 1.0‰ and 25.1 ± 2.0‰, which is a slight underestimation for δ15N and overestimation for δ18O compared with the accepted values (δ15N = 9.9 ± 0.3‰ and δ18O = 24.0 ± 0.3‰). The overall uncertainty of the bacterial denitrification method allows the use of this method for source identification of NO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Zhang  Zhongyi  Xiao  Huayun  Zheng  Nengjian  Gao  Xiaofei  Zhu  RenGuo 《Chromatographia》2016,79(17):1197-1205

Individual free amino acid δ15N values in plant tissue reflect the metabolic pathways involved in their biosynthesis and catabolism and could thus aid understanding of environmental stress and anthropogenic effects on plant metabolism. In this study, compound-specific nitrogen isotope analysis of amino acid by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was carried out to determine individual free amino acid δ15N values. High correlations were observed between the δ15N values obtained by GC-C-IRMS and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) determinations, and the mean precision measured was better than 1 ‰. Cation-exchange chromatography was employed to purify the sample, and the difference between prior to and following passage through the resin was within 1 ‰. The amino acid δ15N values of plant leave samples following incubation in 15N-nitrate at different time points were determined. A typical foliar free amino acid 15N-enrichment pattern was found, and glutamine was the most rapidly labeled amino acid; other amino acids derived from the GS-GOGAT cycle were also enriched. The pyruvate family amino acids were labeled less quickly followed by the aromatic amino acids. This study highlighted that amino acid metabolism pathways had a major effect on the δ15N values. With the known amino acid metabolism pathways and δ15N values determined by the presented method, the influence of various external factors on the metabolic cycling of amino acid can be understood well.

  相似文献   

10.
We report the first high‐precision characterization of molecular and intramolecular δ15N of nucleosides derived from mammalian DNA. The influence of dietary protein level on brain amino acids and deoxyribonucleosides was determined to investigate whether high protein turnover would alter amino acid 15 N or 13 C values. Pregnant guinea pig dams were fed control diets, or high or low levels of dietary protein throughout gestation, and all pups were fed control diets. The cerebellar DNA of offspring was extracted at 2 and 120 days of life, nucleosides isolated and δ15N and δ13C values characterized. Mean diet δ15N was 0.45 ± 0.33‰, compared with cerebellar whole tissue and DNA δ15N = +4.1 ± 0.7‰ and ?4.5 ± 0.4‰, respectively. Cerebellar deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), and deoxyguanosine (dG) δ15N were +1.4 ± 0.4, –2.1 ± 0.9, –7.2 ± 0.3, and ?10.4 ± 0.5‰, respectively. There were no changes in amino acid or deoxyribonucleoside δ15N values due to dietary protein level. Using known metabolic relationships, we developed equations to calculate the intramolecular δ15N values originating from aspartate (asp) in purines (pur) or pyrimidines (pyr), glutamine (glu), and glycine (gly) to be δ15NASP‐PUR, δ15NASP‐PYR, δ15NGLN, and δ15NGLY +11.9 ± 2.3‰, +7.0 ± 2.0‰, –9.1 ± 2.4‰, and ?31.8 ± 8.9‰, respectively. A subset of twelve amino acids from food and brain had mean δ15N values of 4.3 ± 3.2‰ and 13.8 ± 3.1‰, respectively, and δ15N values for gly and asp were 12.6 ± 2.2‰ and 15.2 ± 0.8‰, respectively. A separate isotope tracer study detected no significant turnover of cerebellar DNA in the first six months of life. The large negative δ15N difference between gly and cerebellar purine N at the gly (7) position implies either that there is a major isotope effect during DNA synthesis, or that in utero gly has a different isotope ratio during rapid growth and metabolism from that in adult life. Our data show that cerebellar nucleoside intramolecular δ15N values vary over more than 40‰ and are not influenced by dietary protein level or age. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We investigate the effect of acid treatment methods on δ(15)N values from a range of environmental organic materials in the context of the increased application of 'dual-mode' isotope analysis (the simultaneous measurement of δ(13)C and δ(15)N from the same acid-treated sample). Three common methods are compared; (i) untreated samples; (ii) acidification followed by sequential water rinse (rinse method); and (iii) acidification in silver capsules (capsule method). The influence of capsule type (silver and tin) on δ(15)N is also independently assessed (as the capsule and rinse methods combust samples in different capsules; silver and tin, respectively). We find significant differences in δ(15)N values between methods and the precision of any one method varies significantly between sample materials and above the instrument precision (>0.3‰). The δ(15)N values of untreated samples did not produce the most consistent data on all sample materials. In addition, the capsule type appears to influence the measured δ(15)N value of some materials, particularly those combusted only in silver capsules. We also compare the new δ(15)N data with previously published δ(13)C data on the same materials. The response of δ(13)C and δ(15)N within and between methods and sample materials to acidification appears to be relatively disproportionate, which can influence the environmental interpretation of the measured data. In addition, statistical methods used to estimate inorganic nitrogen are shown to be seriously flawed.  相似文献   

12.
建立了反硝化细菌法结合疫量气体分析仪(TraceGas)/同位素比质谱仪分析水体硝酸盐氮同位素组成的方法.对反硝化细菌生长、培养条件和方法的精密度及稳定性进行了分析,并利用标准样品USGS34研究了样品反硝化孵育时间、TraceGas捕集N2O气体时间对δ15N测定的影响.结果表明:恰当的氧气量才能培养出有效的反硝化细菌;本方法精密度及稳定性较好,同一制备时间内硝酸盐δ15N的SD在0.09‰~0.14‰之间,6个月内SD为0.12‰;样品反硝化孵育3~24 h可以得到稳定的δ15N; TraceGas捕集时间为500 s时得到的δ15N校正值与真实值最接近.应用本方法对养殖场污水和灌溉井水的硝酸盐δ15N进行了测定.  相似文献   

13.
Developments in continuous‐flow isotope ratio mass spectrometry have made possible the rapid analysis of δ13C in CO2 of small‐volume gas samples with precisions of ≤0.1‰. Prior research has validated the integrity of septum‐capped vials for collection and short‐term storage of gas samples. However, there has been little investigation into the sources of contamination during the preparation and analysis of low‐concentration gas samples. In this study we determined (1) sources of contamination on a Gasbench II, (2) developed an analytical procedure to reduce contamination, and (3) identified an efficient, precise method for introducing sample gas into vials. We investigated three vial‐filling procedures: (1) automated flush‐fill (AFF), (2) vacuum back‐fill (VBF), and (3) hand‐fill (HF). Treatments were evaluated based on the time required for preparation, observed contamination, and multi‐vial precision. The worst‐case observed contamination was 4.5% of sample volume. Our empirical estimate showed that this level of contamination results in an error of 1.7‰ for samples with near‐ambient CO2 concentrations and isotopic values that followed a high‐concentration carbonate reference with an isotope ratio of ?47‰ (IAEA‐CO‐9). This carry‐over contamination on the Gasbench can be reduced by placing a helium‐filled vial between the standard and the succeeding sample or by ignoring the first two of five sample peaks generated by each analysis. High‐precision (SD ≤0.1‰) results with no detectable room‐air contamination were observed for AFF and VBF treatments. In contrast, the precision of HF treatments was lower (SD ≥0.2‰). VBF was optimal for the preparation of gas samples, as it yielded faster throughput at similar precision to AFF. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Preserved and archived organic material offers huge potential for the conduct of retrospective and long-term historical ecosystem reconstructions using stable isotope analyses, but because of isotopic exchange with preservatives the obtained values require validation. The Continuous Plankton Recorder (CPR) Survey is the most extensive long-term monitoring program for plankton communities worldwide and has utilised ships of opportunity to collect samples since 1931. To keep the samples intact for subsequent analysis, they are collected and preserved in formalin; however, previous studies have found that this may alter stable carbon and nitrogen isotope ratios in zooplankton. A maximum ~0.9‰ increase of δ(15) N and a time dependent maximum ~1.0‰ decrease of δ(13) C were observed when the copepod, Calanus helgolandicus, was experimentally exposed to two formalin preservatives for 12 months. Applying specific correction factors to δ(15) N and δ(13) C values for similarly preserved Calanoid species collected by the CPR Survey within 12 months of analysis may be appropriate to enable their use in stable isotope studies. The isotope values of samples stored frozen did not differ significantly from those of controls. Although the impact of formalin preservation was relatively small in this and other studies of marine zooplankton, changes in isotope signatures are not consistent across taxa, especially for δ(15) N, indicating that species-specific studies may be required.  相似文献   

15.
A new analytical method is presented for the compound-specific carbon and nitrogen isotope ratio analysis of a thermo-labile nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). Two main approaches were used to minimise thermal decomposition of the compound during gas chromatographic separation: programmed temperature vaporisation (PTV) as an injection technique and a high-temperature ramp rate during the GC run. δ15N and δ13C values of RDX measured by GC-IRMS and elemental analyser (EA)-IRMS were in good agreement within a standard deviation of 0.3‰ and 0.4‰ for nitrogen and carbon, respectively. Application of the method for the isotope analysis of RDX during alkaline hydrolysis at 50°C revealed isotope fractionation factors ε carbon?=??7.8‰ and ε nitrogen?=??5.3‰.  相似文献   

16.
The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.  相似文献   

17.
A recent literature review reported negative relationships between diet discrimination factors (DDFs = Xfish – Xfood; X = δ15N or δ13C) and the values of δ15N and δ13C in the food of wild organisms but there has been no laboratory‐based confirmation of these relationships to date. Laboratory reared guppies (Poecilia reticulata) fed a series of diets with a range of δ13C (?22.9 to ?6.6‰) and δ15N (6.5 to 1586‰) values were used to magnify diet‐tissue dynamics in order to calculate DDFs once the fish had achieved equilibrium with each of the diets. Values of DDFs range widely for δ15N (7.1 to ?849‰) and δ13C (1.1 to ?7.0‰) and showed a strong negative correlation with the stable isotope value in the food for δ15N (slope = ?0.59 ± 0.02, r2 = 0.95) and δ13C (slope = ?0.56 ± 0.02, r2 = 0.94). Based on these relationships, the magnitude of DDF change over environmentally relevant values of δ15N or δ13C would be significant and could confound the interpretation of stable isotopes in the environment. Using highly enriched experimental diets, our study adds to a growing number of studies that undermine the consistent trophic enrichment paradigm with results that demonstrate the currently poor mechanistic understanding of how DDFs arise. The results of our study highlight that the magnitude of the stable isotope values in prey must be considered when choosing DDF values. Future laboratory studies should therefore be directed at uncovering the mechanistic basis of DDFs and, like others before, we recommend the determination of diet‐dependent DDFs under laboratory conditions before modeling dietary proportions or calculating trophic positions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1‰ (Units for δ are parts per thousand or per million (‰).) for samples larger than 400 pmol and better than 0.5‰ for samples larger than 25 pmol (0.1‰ 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05‰. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, δ values were within 0.25‰ of results obtained using conventional techniques and standard deviations were better than 0.35‰. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23‰, respectively, when 2 mnol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.  相似文献   

19.
采用热脱附与稳定同位素质谱联用技术分析了城市不同源及大气环境中挥发性有机物排放的单体同位素特征。系统考察了样品进样量、进样方式和样品分离度对同位素分馏影响情况。使用填有Tenax TA的吸附管采集汽油车尾气、汽油挥发、柴油车尾气、柴油挥发、溶剂挥发和餐饮油烟等污染源,以及城市不同功能区的挥发性有机物(VOCs)样品,不同污染源中挥发性有机物的稳定碳同位素δ13C值不同,97#汽油车尾气的δ13 C值偏重,平均值为-25.84‰,富集13 C;餐饮油烟的δ13 C值偏轻,平均值为-30.26‰。油品挥发比燃烧后以尾气的形式排放的苯系物δ13 C值重。厦门市各功能区挥发性有机物的δ13 C平均范围在-27.03‰~-25.40‰,接近于汽油和柴油挥发及尾气中的δ13 C值,表明厦门市空气中挥发性有机物以机动车排放源为主。  相似文献   

20.
The natural abundances of stable nitrogen isotopes in plants and soils have been viewed as recorders that can be used to reconstruct paleoclimate and ecological processes or to indicate the biogeochemical cycle of nitrogen in nature. This study systematically measured the nitrogen isotope composition (δ15N) in plants and surface soils along an altitudinal transect of elevation range of 1200 to 4500 m on the eastern slope of Mount Gongga in southwest China. The influences of photosynthetic pathways on plant δ15N as well as the effects of temperature and precipitation on δ15N altitudinal trends in plants and surface soils are discussed. Across this altitude transect, the δ15N values of C3 and C4 plants on Mount Gongga range between ?9.87‰ and 7.58‰ with a mean value of ?1.33‰, and between ?3.98‰ and 4.38‰ with a mean value of ?0.25‰, respectively. There is an evident δ15N difference between C3 plants and C4 plants. If, however, you only compare C4 plants with those C3 plants growing at the same altitudinal range, no significant difference in δ15N exists between them, suggesting that photosynthetic pathway does not have an influence on the plant δ15N values. In addition, we found that C3, C4 plants and surface soil (0–5 cm depth) all trend significantly towards more negative δ15N with increasing elevation. Furthermore, this study shows that the mean annual temperature and the mean annual precipitation positively and negatively correlate with δ15N in C3 and C4 plants, respectively. This indicates that precipitation and temperature are the main controlling factors of the δ15N variation in plants with altitude. We propose that lower δ15N values of plants and soils at higher altitude should be attributed to lower mineralization and lower net nitrification rates induced by low temperature and abundant rainfall. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号