首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In order to determine PAHs in marine sediment samples by GC/MS(SIM) a new extraction approach of ASE-SFE was evaluated using combined accelerated solvent extraction (ASE, dynamic and static mode) and supercritical fluid extraction (SFE, dynamic mode) without further purification of the sample. The solvents used for ASE-SFE were methylene chloride and carbon dioxide. The recovery data, precision and accuracy of the whole method were evaluated statistically. The average recoveries of PAHs, based on deuterated internal standards were 77% for 2–3-ring PAHs, 85% for 4-ring PAHs, 88% for ¶5-ring PAHs and 97% for 6-ring PAHs. The extraction time required for the ASE-SFE technique was 30 min, which is longer than in the case of independent use of ASE and shorter compared to SFE. ASE-SFE recoveries of PAHs from SRM marine sediment are comparable for (2–3-ring, 4-ring PAHs) or higher (5-ring, 6-ring PAHs) than reported for the conventional extraction methods of ASE and SFE. Method detection limits of (MDL) were statistically estimated. MDL values obtained for 15 PAHs compounds vary between 0.06 ngg?1 and 3.54 ngg?1.  相似文献   

2.

The efficiencies of supercritical fluid extraction (SFE), accelerated solvent extraction (ASE), Soxhlet, and ultrasonic extraction in the analysis of polycyclic aromatic hydrocarbons (PAHs) in soils were evaluated. Solvents with different polarity were used to extract the PAHs from two soils, one with high and one with low contamination level. ASE showed good results with all solvents almost independent of the solvent polarity and the best results with acetone-toluene (1 : 1). Ultrasonic extraction with acetone-toluene for the uncontaminated soil and acetone-ethanolamine for the highly contaminated also showed good recoveries. The time-consuming Soxhlet extraction with pentane or dichloromethane was less effective. The PAH recovery from SFE was related to the soil matrix or the contamination level. The best extraction conditions (CO 2 /10% pentane) are successful for the soil with a low contamination level and a high humic acid content whereas the extractions of the highly contaminated soil gave poor results irrespective of the solvent used.  相似文献   

3.
 For the determination of 16 PAHs in soils and sediment samples by GC/FID and GC/MS, the dynamic off-line supercritical fluid extraction with both pure and modified carbon dioxide has been evaluated. The optimisation of extraction parameters was performed for four individual groups of PAHs according to their number of aromatic rings (2–3 rings, 4 rings, 5 rings and 6 rings) by varying pressure (200–510 bar), temperature (50–150 °C), extraction fluid volume (10–50 ml), and the methanol modifier concentration (0–10%). Using a five level spherical factorial experimental design the number of experiments required for optimisation was 45. In spiked soil samples extraction efficiencies of 80–100% were achieved for the individual groups of PAHs. At the optimal set of conditions 10–30% lower recoveries of PAHs were obtained for the standard reference material NIST SRM 1941a (marine sediment). The largest differences between extraction recoveries of native and spiked PAHs occurred at high molecular weight PAHs. Using SFE efficiency data for the standard reference material, cluster analysis proved that dividing the 16 PAHs into four groups according to their number of aromatic rings was appropriate and correct. Received: 2 February 1996/Revised: 26 November 1996/Accepted: 30 November 1996  相似文献   

4.
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)分析海洋沉积物中16种多环芳烃(PAHs)的分析方法。样品由正己烷-丙酮(1∶1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹浓缩后,采用硅胶固相萃取小柱进行净化,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,16种PAHs在0.01~1.00 mg/L范围内线性关系良好,相关系数(R)大于0.997;目标物的加标回收率为75.8%~97.8%;日内与日间精密度(RSD)均小于10%。当取样量为20.0 g时,16种PAHs的方法检出限为0.048~0.234 μg/kg。该法快速、准确、稳定,能够满足海洋沉积物中痕量PAHs的测定。  相似文献   

5.
Abstract

The Accelerated solvent extraction (ASE) of PAHs (23 2- to 6-ring species) spiked onto glass fibre filters (GFFs) was studied as a function of variable extraction solvents, pressure, temperature and extraction times. Acceptable recoveries (85% ± 15%) were obtained for certain combinations of conditions and a tentative method (1500 psi, 150°C, 70:30 hexane:acetone mixture, 7 min heat-up time, 5 min static extraction time, 60% flush volume, 2 static cycles was selected for further testing. However, this method did not prove as effective as the traditional Soxhlet method of extraction when these parameters were used to extract native PAHs from ambient atmospheric particulate matter collected on a GFF by Integrated Atmospheric Deposition Network (IADN) sampling protocols. The extraction recovery study for spiked GFFs was repeated using slightly different extraction conditions: 2000 psi, 100°C, 70:30 hexane:acetone, 5 min heat-up time, 5 min static extraction time, 150% flush volume, 3 static cycles. When this method was applied to the extraction of native PAHs from ambient atmospheric particulate matter collected on GFFs, the results showed equivalent or better recoveries to that of the Soxhlet method. The total time of extraction was 25 min requiring only 30 mL of solvent. This ASE method is presently used to quantitatively determine PAHs in IADN particle-phase samples.  相似文献   

6.
A simplified extraction method was developed for extracting high molecular weight polycyclic aromatic hydrocarbons (PAHs) from river sediments. The samples were extracted 3 times with 5 mL of solvent (toluene:methanol, 9 : 1, v/v) at 100 °C, 10 minutes for each extraction. After clean‐up and concentration, extracts were analyzed by gas chromatography coupled with mass spectrometer (GC‐MS). The extraction efficiency and accuracy was evaluated by the standard reference material (SRM‐1941b). Comparing to certified values, the average recoveries of high molecular weight PAHs with 3, 4, 5 and 6 fused benzene rings were 72.9∼113.2 % (R.S.D. 2.3∼6.3 %) except those of dibenz[a,h]anthracene (206.2±4.6 %). The average recoveries for PAHs spiked sediment samples were comparable with accelerated solvent extraction (ASE) and Soxhlet methods. The simple extraction method consumes less solvent, fewer amount of sample than those of conventional methods. The lowest quantitation limit of PAHs is 1.1 μg/kg.  相似文献   

7.
The methods of simultaneous extraction of iprodione, chlorpyrifos-methyl, EPN and endosulfan (with its metabolites) from kiwi fruit using accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and liquid-liquid extraction (LLE) were tested and compared in terms of their of limits of detection and quantification, as well as the highest pesticide recoveries with the lowest residues in the final extracts. The analysis was performed using gas chromatography-mass spectrometry in the selected ion monitoring mode. The proposed methods featured good sensitivity, pesticide quantification limits were low enough, and the precision (expressed as relative standard deviations) ranged from 0.56 to 7.17%. The recoveries obtained from ASE, SFE and LLE were 77.5-120, 71.9-109.1 and 75.6-127.1%, respectively. The proposed methods were successfully applied for the monitoring of the selected pesticide residues in kiwi fruit samples collected from Jollanamdo area, Republic of Korea. Iprodione was detected at a level lower than the maximum residue limit (MRL) established by the Korea Food and Drug Administration (5 ppm), while EPN was detected at a level higher than the Korea Food and Drug Administration MRL (0.1 ppm) in the real samples. The proposed sample preparations led to a higher preconcentration of the pesticide fraction, and allowed the sensitive and selective determination of pesticides with varied physicochemical properties in kiwi fruit. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Ren Y  Lian JJ  Xue HX  Chen JM  Cheng TT 《Annali di chimica》2006,96(11-12):669-680
EPA 16 priority polycyclic aromatic hydrocarbons (PAHs) were extracted from dust by supercritical fluid extraction (SFE). Parameters (pressure, temperature and time) affecting the collection efficiencies of PAHs were assessed according to the extraction efficiency, and 30 MPa, 80 degrees C and 30 min dynamic extraction time were confirmed to be the best and simplest conditions of SFE to extract 16 priority PAHs from dust. The characterization of the extracts was carried out by gas chromatography with mass detector in selective ion mode (GC/MS/SIM). Ultrasonic extraction (USE) was used as a comparison with SFE. The results showed that the SFE method has a better efficiency than USE for the extraction of PAHs in dust. With the optimized conditions of SFE, the distribution of PAHs in dust samples in urban areas of Shanghai from Mar 10, 2005 to May 28, 2005 was investigated. The results demonstrated that traffic emission, especially from gasoline engines, was the main source of PAHs in dust of Shanghai.  相似文献   

9.
Accelerated solvent extraction (ASE) shows higher recoveries for PAHs in comparison with traditional Soxhlet extraction, but in a fraction of time and with less solvent consumption. Better recoveries are especially achieved with PAHs of high reactivity, the latter being expressed by the structure-to-count ratio (SCR). To estimate polar pollutants including phenols/benzenediols, the sample was subjected to a combined in-situ derivatization/extraction approach using 2% v/v acetic anhydride in toluene. The main reason for the better recovery obtained in this way, in comparison with the classical ASE approach, is to overcome strong matrix-analyte interactions. Analogously, fatty acids were analyzed as methyl esters obtained by in-situ derivatization/extraction using boron trifluoride.  相似文献   

10.
超临界流体萃取环境模拟样品中多环芳烃的收集方法研究   总被引:15,自引:0,他引:15  
详细系统地研究了收集溶剂的种类、用量及无溶剂固体表面冷冻捕集等方法对离线收集超临界流体萃取多环芳烃组分效率的影响。研究发现,二氯甲烷和丙酮的收集效率较高,其回收率为61.44%~105.40%,其它有机溶剂效果较差。而且,当收集溶剂的液面高度大于2.0cm时,溶剂的用量对收集效率没有明显的影响。玻璃珠固体表面冷冻捕集效果较好,其回收率在60.98%~109.88%之间,但其精密度较差,相对标准偏差(RSD)在0.28%~11.29%之间。  相似文献   

11.
Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is applied for the determination of polycyclic aromatic hydrocarbons (PAHs) from natural matrix through a distilled water medium. Seven of the 16 PAH standards (naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, benzo[a]anthracene) are spiked on a marine muddy sediment. The samples, containing PAHs in the range of 10-20 ppm, are then aged at room temperature more than 10 days before analysis. The influence of the matrix, SPME adsorption time, pH, salt content, and SPME adsorption temperature are investigated. The reproducibility of the technique is less than 13% (RDS) for the first 6 considered PAHs and 28% (RDS) for benzo(a)anthracene with a fiber containing a 100-micron poly dimethylsiloxane coating. Linearity extended in the range of 5-50 picograms for PAHs direct injection, 5-70 picograms for PAHs in water, and 1-170 picograms for PAHs in sediment. The detection limit is estimated less than 1 microgram/kg of dry sample for the first 6 considered PAHs in sediment and 1.5 micrograms/kg of dry sample for benzo(a)anthracene using the selected ion monitoring mode in GC-MS. The recoveries of the considered PAHs are evaluated.  相似文献   

12.
A new method has been developed for the simultaneous determination of the most frequently used anionic surfactants - linear alkylbenzene sulfonates (LAS), alkyl ethoxysulfates (AES) and alkyl sulfates (AS) - in aqueous and sediment samples. Preconcentration and purification of water samples are carried out by means of solid-phase extraction (SPE). The efficiency of two different extraction methods for the analysis of sediments - Soxhlet extraction and pressurized liquid extraction (PLE) - has been compared. Identification and quantification of the target compounds is performed using a liquid chromatography - mass spectrometry (LC-MS) system equipped with an electrospray interface (ESI) in negative ion-mode. Homologue recoveries are 85-123% for SPE, 94-112% for Soxhlet extraction and 81-125% for PLE in the case of LAS, and 60-94% for SPE, 61-109% for Soxhlet extraction and 55-99% for PLE in the case of AES, whereas the limits of detection are 0.1-0.5 ngml(-1) in water and 1-5 ngg(-1) in sediment. This method has been applied to the determination of anionic surfactants in the Guadalete estuary (SW Spain), and LAS concentration levels from 538 to 1014 ngg(-1) in sediments and from 25.1 to 64.4 ngml(-1) in waters have been found. AES values from 168 to 536 ngg(-1) in sediments and from 4.5 to 11.9 ngml(-1) in waters are reported for the first time in European rivers.  相似文献   

13.
The primary objective of this study was to simultaneously analyze the residues of the most commonly used pesticides, chlorpyrifos-methyl, endosulfan, EPN, and iprodione in the water dropwort, via accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and conventional solvent extraction (LLE) techniques. Residue levels were determined using GC with electron-capture detection (GC-ECD). The confirmation of pesticide identity was performed by GC-MS in a selected ion-monitoring (SIM) mode. In none of the ASE and SFE techniques were the extraction conditions optimized. Rather, the experimental variables were predicated on the author's experience. The ECD response for all pesticides was linear in the studied range of concentrations of 0.005-5.0 ppm, with correlation coefficients in excess of 0.9991. At each of the two studied fortification levels, the pesticides yielded recoveries in excess of 72% with RSDs between 1 and 19%. The LODs were achieved at a range of levels from 0.001 to 0.063 ppm, depending on the pesticide utilized. The LOQs, which ranged from 0.003 to 0.188 ppm, were lower than the maximum residue limits (MRLs) authorized by the Korean Food and Drug Administration (KFDA). All of the methods were applied successfully to the determination of pesticide residues in the real samples. It could, therefore, be concluded that any of the techniques utilized in this investigation might prove successful, given that the applied extraction conditions are wisely chosen.  相似文献   

14.
Accelerated solvent extraction (ASE) shows higher recoveries for PAHs in comparison with traditional Soxhlet extraction, but in a fraction of time and with less solvent consumption. Better recoveries are especially achieved with PAHs of high reactivity, the latter being expressed by the structure-to-count ratio (SCR). To estimate polar pollutants including phenols/benzenediols, the sample was subjected to a combined in-situ derivatization/extraction approach using 2% v/v acetic anhydride in toluene. The main reason for the better recovery obtained in this way, in comparison with the classical ASE approach, is to overcome strong matrix-analyte interactions. Analogously, fatty acids were analyzed as methyl esters obtained by in-situ derivatization/extraction using boron trifluoride. Received: 28 December 1998 / Revised: 16 February 1999 / Accepted: 21 February 1999  相似文献   

15.
K. G. Furton  J. Rein 《Chromatographia》1991,31(5-6):297-299
Summary The quantitative effect of microextractor cell geometries on supercritical fluid extraction (SFE) efficiencies of polycyclic aromatic hydrocarbons (PAHs) and methoxychlor from octadecyl-bonded sorbents has been evaluated and compared to similar effects seen upon increasing the supercritical fluid density. For the PAHs studied, correlations between the fused ring number and the relative increase in recoveries have been established. SFE recoveries can be increased by greater than a factor of two by decreasing the diameter to length ratio from 120 to 11. The relative recovery increase upon decreasing the diameter to length ratio of the extraction vessel is dependent on the analyte extractability, increasing in proportion to the fused ring number for the PAHs. Recoveries increased linearly as a function of supercritical fluid density for the PAHs studied. The change in the relative recovery upon increasing the supercritical carbon dioxide density again was dependent on the analyte type, decreasing linearly with fused ring number. Although fluid density generally had the greatest effect on achievable SFE recoveries, the cell geometry had effects of a similar order of magnitude, highly dependent on the initial extractability of the analyte.  相似文献   

16.
The aim of this work was to optimise and validate the experimental conditions for the analysis of 20 polycyclic aromatic compounds (PACs) [19 polycyclic aromatic hydrocarbons (PAHs) and dibenzothiophene as polycyclic aromatic sulphur heterocycle (PASH)] in marine sediments by reversed-phase high-performance liquid chromatography (LC) coupled to photodiode array detection (DAD) and to mass spectrometry (MS). The LC-MS interface used was atmospheric pressure chemical ionization (APCI) in the positive ion mode. The operational parameters of the APCI interface and MS detection, such as organic modifier, fragmentation voltage, gain, vaporizer temperature, corona current, capillary voltage, drying gas (N2) and nebulizer pressure, were studied. The sediments were subjected to microwave-assisted solvent extraction (MAE) and clean-up by solid-phase extraction (SPE). The relevance of the selected PACs lies in the fact that 16 PACs are classified by the US Environmental Protection Agency as priority pollutants; 17 PACs are detected in the Prestige oil spill; and 8 PACs are included in the priority substance list of the EU water policy. Recoveries from 47% to 102% were obtained for SRM 1944 certified reference sediment. The limits of quantitation were lower than 100 ngg(-1) dry weight for most PACs, and good precision was achieved.  相似文献   

17.
沉积物是多环芳烃(polycyclic aromatic hydrocarbons,PAHs)在环境中迁移归趋的一个重要的汇[1]。沉积物中多环芳烃的提取方法主要有索氏提取、超声波提取、微波萃取、加速溶剂提取及超临界流体萃取等。其中加速溶剂提取(accelerated solvent extraction,ASE)由于提取速度快,溶  相似文献   

18.
Several methods of extraction were optimized to extract polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives and heavy n-alkanes from a highly adsorptive particulate matter resulting from the combustion of diesel fuel in a diesel engine. This particular carbonaceous particulate matter, collected at high temperatures in cordierite diesel particulate filters (DPF), which are optimized for removing diesel particles from diesel engine exhaust emissions, appeared extremely refractory to extractions using the classical extracting conditions for these pollutants. In particular, the method of accelerated solvent extraction (ASE) is described in detail here. Optimization was performed through experimental design to understand the impact of each factor studied and the factors’ possible interactions on the recovery yields. The conventional extraction technique, i.e., Soxhlet extraction, was also carried out, but the lack of quantitative extractions led us to use a more effective approach: hot Soxhlet. It appeared that the extraction of the heaviest PAHs and nitroPAHs by either the optimized ASE or hot Soxhlet processes was far from complete. To enhance recovery yields, we tested original solvent mixtures of aromatic and heteroaromatic solvents. Thereafter, these two extraction techniques were compared to microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE). In every case, the only solvent mixture that permitted quantitative extraction of the heaviest PAHs from the diesel soot was composed of pyridine and diethylamine, which has a strong electron-donor character. Conversely, the extraction of the nitrated PAHs was significantly improved by the use of an electron-acceptor solvent or by introducing a small amount of acetic acid into the pyridine. It was demonstrated that, for many desirable features, no single extraction technique stound out as the best: ASE, MAE or SFE could all challenge hot Soxhlet for favourable extractions. Consequently, the four optimized extraction techniques were performed to extract the naturally polluted diesel soot collected inside the DPF. Comparisons with the NIST standard reference material SRM 1650b showed that the soot collected from the DPF contained 50% fewer n-alkanes, and also markedly lower levels of PAHs (44 less concentrated) than SRM 1650b, and that the ratio of nitroPAHs to PAHs was increased. These results were attributed to the high temperatures reached inside the particulate filter during sampling runs and to the contribution of the catalytic DPF to aromatic and aliphatic hydrocarbons abatement.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorinated Pesticides (OCPs) on different absorbents were extracted and analyzed by a directly coupled supercritical fluid extraction and supercritical fluid chromatography system (on-line SFE/SFC). The influence of various absorbents as sample matrixes on extraction efficiencies was evaluated. In general, the extraction efficiencies were decreased if a matrix had a larger surface area and a smaller pore size. The recoveries of PAHs and PCBs were decreased in inverse proportion to their molar mass. Recoveries of OCPs containing epoxy functional groups were greater than for OCPs lacking this functional group. In conclusion, online SFE/SFC is a rapid (1-2 h) and high recovery (70%-100%) analytical technique.  相似文献   

20.
Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane (1:1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号