首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
建立快速溶剂萃取-气相色谱-质谱法同时测定土壤中多环芳烃、六六六和滴滴涕。优化了提取溶剂和洗脱溶剂,采用加速溶剂萃取法处理土壤样品,萃取溶剂为二氯甲烷-正己烷(1∶1)。提取液用氮吹仪浓缩、硅酸镁固相萃取小柱净化,用二氯甲烷-正己烷(3∶7)混合溶剂对固相萃取小柱进行活化和洗脱,流出液净化后氮吹浓缩至1 mL,利用气相色谱-质谱内标法进行分析定量。16种多环芳烃、8种有机氯农药及3种替代物在5.0~500μg/L范围内线性良好,方法检出限为0.000 55~0.000 77 mg/kg,加标回收率为68.2%~112.7%,相对标准偏差为4.3%~10.1%(n=5)。该方法可用于同时测定土壤中多环芳烃、六六六、滴滴涕的含量。  相似文献   

2.
采用气相色谱-三重串联四级杆质谱联用技术测定了鱼组织中24种多环芳烃(PAHs).将冻干鱼组织样品加入同位素内标后,用加速溶剂萃取法(ASE)进行提取,提取液采用凝胶排阻色谱(GPC)和固相萃取(SPE)联用进行净化.采用二氯甲烷为提取溶剂,100℃下提取,以二氯甲烷作为GPC的流动相,在3.5 mL/min流速下,收...  相似文献   

3.
本文以四丁基氯化铵和正辛醇制备的疏水性低共熔溶剂为绿色提取溶剂,结合高效液相色谱-荧光检测技术,构建了同时分析牛奶中芴、荧蒽、蒽、芘、■和苯并[a]芘6种多环芳烃类物质的新方法。系统地考察了各种萃取条件,包括萃取剂的种类、萃取时间、萃取温度、萃取剂用量以及盐的含量对牛奶中6种多环芳烃化合物提取效果的影响。结果表明,在优化的实验条件下,采用所制备的低共熔溶剂体系能较好地萃取上述6种多环芳烃化合物,三个水平的加标回收率为70.87%~100.45%,相对标准偏差为1.05%~8.95%,方法的检出限在0.03~0.3μg/kg之间。该方法快速、简便、环保,适用于牛奶中多环芳烃的测定。  相似文献   

4.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

5.
综述了近年来土壤和沉积物中多环芳烃分析技术的研究进展。重点阐述了索氏提取、超声波提取法、加速溶剂萃取法、微波辅助萃取法、超临界流体萃取法、固相微萃取法、柱层析法、固相萃取法、凝胶渗透色谱法等前处理技术和气相色谱-质谱法、高效液相色谱法和超高效液相色谱法等分析方法,并展望了未来发展的趋势(引用文献71篇)。  相似文献   

6.
研究了加速溶剂萃取(ASE)对沉积物中邻苯二甲酸酯类(PAEs)物质的提取效果,建立了快速溶剂萃取/气相色谱-质谱联用(GC/MS)检测沉积物中16种邻苯二甲酸酯类物质的方法。用正己烷和二氯甲烷混合溶剂作为提取溶剂,加速溶剂萃取法萃取沉积物中16种PAEs,再用Florisil层析柱净化,最后用GC/MS对净化后提取液中的PAEs进行定量分析。结果表明:当萃取剂为二氯甲烷-正己烷(1∶1,V/V),萃取温度为80℃时,萃取效率最高,16种PAEs的回收率稳定在81.2%~128.5%之间,相关系数≥0.99,检出限为0.12~0.98 ng/g,相对标准偏差为1.1%~10.8%。加速溶剂萃取法与传统索氏提取法相比,既提高了萃取效率同时又减少了有机萃取溶剂的用量。在检测实际样品时,同时加入3种内标指示剂对方法的性能进行了验证,3种内标的回收率分别为106.0%±18.8%,87.4%±10.8%和81.4%±14.5%,样品中16种PAEs的检出率为100%。前处理方法处理简单,定性与定量分析准确可靠。  相似文献   

7.
建立了同时测定纸质食品接触材料中18种禁用多环芳烃的气相色谱-质谱/选择离子监测方法。以二氯甲烷-正己烷(1∶1)为提取溶剂,在90℃下微波辅助萃取纸质食品接触材料中的多环芳烃,提取液经二甲亚砜萃取、环己烷反萃取、硅胶固相萃取柱净化后,进行气相色谱-质谱/选择离子监测分析,外标法定量。各组分的检出限为0.1~1.0μg/kg,相关系数均大于0.997,加标回收率为56.3%~95.4%,相对标准偏差均小于7%。该方法简便快捷、灵敏度高、定性定量准确,适用于纸质食品接触材料中多环芳烃的同时测定。  相似文献   

8.
熊力  王金成 《分析测试学报》2019,38(11):1335-1339
建立了自来水中6种氯代多环芳烃和15种多环芳烃的凝固漂浮有机液滴-分散液液微萃取高效液相色谱分析方法,并探讨了萃取剂种类和用量、分散剂种类和用量、氯化钠含量及涡旋振荡时间等因素对萃取效率的影响。优化后的萃取实验条件为:10μL十二醇为萃取溶剂,500μL甲醇为分散溶剂,6%NaCl,涡旋振荡时间2 min。目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm,5μm)分离后,外标法定量。结果表明,21种目标化合物在一定质量浓度范围内线性良好,相关系数均不低于0.999;在低、中、高3个加标水平下的回收率为70.6%~98.7%,相对标准偏差(RSD)为2.0%~10%;方法的检出限(LOD,S/N=3)为0.000 7~0.009μg/L,定量下限(LOQ,S/N=10)为0.002 2~0.028μg/L。可用于自来水中氯代多环芳烃和多环芳烃的分析检测。  相似文献   

9.
沉积物中痕量多环芳烃湿法与干法提取的比较研究   总被引:2,自引:1,他引:1  
以美国环保局(EPA)优先控制的16种多环芳烃(polycyclic aromatic hydrocarbons, PAHs)为研究对象,建立了湿法超声波辅助萃取技术提取沉积物中痕量PAHs的可靠方法,对萃取剂、萃取功率、萃取次数和萃取时间进行了优化.并与传统干法超声辅助萃取进行了比较,湿法超声波辅助萃取的PAHs回收率为57% ~125%,而干法超声波辅助萃取PAHs的回收率为48% ~113%,对相对分子质量小的PAHs如萘~芴的回收率,湿法明显高于干法.该文建立的湿法超声辅助萃取适用于沉积物和泥土中痕量PAHs的快速测定.  相似文献   

10.
建立了采用自动索氏萃取-气相色谱-质谱联用检测电子电气产品中多环芳烃和多氯联苯的方法.通过以V(丙酮)∶V(正己烷)=1∶1为溶剂,一次自动索氏提取材料中多环芳烃和多氯联苯,分别采用H2SO4预处理,再用硅胶柱净化,气相色谱-质谱联用仪检测,该方法对多环芳烃检测限为0.2 mg/kg、多氯联苯检测限为0.1 mg/kg,加标回收率在60%~99%之间,相对标准偏差(RSD)均小于5%,多环芳烃的线性范围在0.1~100 mg/L,多氯联苯的线性范围在0.4~250 mg/L,相关系数(r)均大于0.999.实验结果表明方法能满足电子电气产品材料中多环芳烃和多氯联苯的检测要求.  相似文献   

11.
A simple, rapid, and efficient method, vortex‐assisted extraction followed by dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples prior to analysis by high performance liquid chromatography fluorescence detection. Acetonitrile was used as collecting solvent for the extraction of PAHs from sediment by vortex‐assisted extraction. In DLLME, PAHs were rapidly transferred from acetonitrile to dichloromethane. Under the optimum conditions, the method yields a linear calibration curve in the concentration range from 10 to 2100 ng g?1 for fluorene, anthracene, chrysene, benzo[k]fluoranthene, and benzo[a]pyrene, and 20 to 2100 ng g?1 for other target analytes. Coefficients of determinations ranged from 0.9986 to 0.9994. The limits of detection, based on signal‐to‐noise ratio of three, ranged from 2.3 to 6.8 ng g?1. Reproducibility and recoveries was assessed by extracting a series of six independent sediment samples, which were spiked with different concentration levels. Finally, the proposed method was successfully applied in analyses of real nature sediment samples. The proposed method extended and improved the application of DLLME to solid samples, which greatly shorten the extraction time and simplified the extraction process.  相似文献   

12.
A simplified extraction method was developed for extracting high molecular weight polycyclic aromatic hydrocarbons (PAHs) from river sediments. The samples were extracted 3 times with 5 mL of solvent (toluene:methanol, 9 : 1, v/v) at 100 °C, 10 minutes for each extraction. After clean‐up and concentration, extracts were analyzed by gas chromatography coupled with mass spectrometer (GC‐MS). The extraction efficiency and accuracy was evaluated by the standard reference material (SRM‐1941b). Comparing to certified values, the average recoveries of high molecular weight PAHs with 3, 4, 5 and 6 fused benzene rings were 72.9∼113.2 % (R.S.D. 2.3∼6.3 %) except those of dibenz[a,h]anthracene (206.2±4.6 %). The average recoveries for PAHs spiked sediment samples were comparable with accelerated solvent extraction (ASE) and Soxhlet methods. The simple extraction method consumes less solvent, fewer amount of sample than those of conventional methods. The lowest quantitation limit of PAHs is 1.1 μg/kg.  相似文献   

13.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。  相似文献   

14.
Sediments are the fate of several emerging organic contaminants, such as pharmaceuticals, personal care products and hormones, and therefore an important subject in environmental monitoring studies. In the present work, a simple and sensitive method was developed, validated and applied for the simultaneous extraction of atenolol, caffeine, carbamazepine, diclofenac, ibuprofen, naproxen, propranolol, triclosan, estrone, 17‐β‐estradiol and 17‐α‐ethinylestradiol using ultrasound‐assisted extraction from freshwater sediment samples followed by solid‐phase extraction clean‐up and liquid chromatography with tandem mass spectrometry detection. The solvent type and extraction pH were evaluated to obtain the highest recoveries of the compounds. The best method shows absolute recoveries between 54.0 and 94.4% at 50 ng/g concentration. The method exhibits good precision with relative standard deviation ranging from 1.0–16%. The detection and quantification limits ranged from 0.006–0.067 and 0.016–0.336 ng/g, respectively. The developed method was successfully applied to freshwater sediment samples collected from different sites in Jundiaí River basin of São Paulo State, Brazil. The compounds atenolol, caffeine, propranolol and triclosan were detected in all the sampling sites with concentrations of 13.8, 41.0, 28.5 and 176 ng/g, respectively.  相似文献   

15.
In this article, homogeneous liquid–liquid extraction (HOLLE), combined with HPLC-fluorescence detector (HPLC-FLD), has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in vegetables. ACN was used as extraction solvent for the extraction of target analytes from vegetables. When the previous extraction process was over, the ACN extract was transferred to the water-immiscible organic phase, tetrachloroethane, used as extraction solvent in HOLLE procedures. Under the optimum conditions, repeatability was carried out by spiking PAHs at concentration level of 12.5 μg/kg, the RSDs varied between 1.1 and 8.5% (n = 3). The LODs, based on S/N of 3, ranged from 0.025 to 0.25 μg/kg. Relative recoveries of PAHs from cucumber and long crooked squash samples were in the range of 72.4–104.9% and 65.5–119.3%, respectively. Compared with the conventional extraction method, the proposed method has the advantage of being quick, easy to operate, and having low consumption of organic solvent.  相似文献   

16.
Focused ultrasonic solid-liquid extraction (FUSLE) has been optimised for simultaneous analysis of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), and nonylphenols (NPs) in sediment samples. Optimisation was performed using naturally polluted freeze-dried sediment samples. The variables studied during the optimisation process were: percentage of maximum power (10-60%), extraction time (10-300 s), number of cycles (1-9), composition of the extraction solvent (acetone-n-hexane, 10:90-90:10), and sample mass (0.1-1 g). The volume of the extractant was constant (10 mL) and the extraction was performed at 0 degrees C in an ice-bath during the optimisation process. All these variables were studied using an experimental design approach by means of The Unscrambler software. The extraction time and the operational variables (number of cycles and power) had no statistically significant effect in the extraction and they were held at 2 min, 20% power, and seven cycles, respectively. The mass and the addition of non-polar solvent (n-hexane) had a negative effect in the extraction yield and, thus, the mass was held at 0.5 g and pure acetone was used as extraction solvent. After those variables were optimised, the effect of the extraction temperature (0 degrees C or room temperature) was also studied. The validation of the extraction method was performed using NIST-1944 reference material in the case of PAHs and PCBs. Because no certified reference sediment is available for PEs and NPs, the results obtained for FUSLE were compared with those obtained for microwave-assisted extraction (MAE) under conditions optimised elsewhere. In all the cases the analysis were performed by gas chromatography-mass spectrometry (GC-MS). Good accuracy were achieved in all cases. The limits of detection (LODs) obtained were between 0.10 and 1.70 ng g(-1) for PAHs (except for naphthalene 5.33 ng g(-1)), 0.02 and 0.16 ng g(-1) for PCBs, 46 and 188 ng g(-1) for PEs, and 0.6 and 12.4 microg g(-1) for NPs. The precision was around 5-10% for most of the PAHs and PCBs and around 2-10% for most of the PEs and NPs.  相似文献   

17.
A method for the determination of 27 polycyclic aromatic hydrocarbons (PAHs) in sludge from wastewater treatment plants (WWTPs) located in urban, industrial or rural zones is presented. PAHs were extracted by matrix solid-phase dispersion (MSPD) assisted by sonication. Purification of extracts was carried out by solid-phase extraction with C(18) and PAHs were eluted with acetonitrile. PAHs were determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion-monitoring mode (GC-MS-SIM), using deuterated PAHs as internal standards. The limits of detection ranged from 0.03 ng/g for acenaphthylene to 0.45 ng/g for benzo[b]naphtho[2,1-d]thyophene. After optimization, the method was validated with a certified reference sludge. The proposed analytical method was applied to determine PAH levels in sewage sludge samples collected from 19 water treatment plants located in the province of Madrid (Spain). In most of the examined samples, phenanthrene was the main compound with a mean concentration of 1062 ng/g. PAHs were detected in all of the samples, with total concentrations between 390 and 6390 ng/g dry weight for the 27 PAHs analyzed and from 310 to 5120 ng/g dry weight for the sum of the 10 PAHs considered in the draft European Union directive.  相似文献   

18.
A method has been developed and optimised for the determination of two natural estrogens, estrone (E1) and 17beta-estradiol (E2), and one synthetic estrogen, 17alpha-ethynylestradiol (EE2), in river sediments at the sub-ng/g level. This procedure includes microwave-assisted solvent extraction (MASE), solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionisation. Using sediments spiked with the three estrogens at 10 ng/g wet weight, efficient extraction (>92%) of all the three analytes was achieved by MASE, and whole-procedure recoveries ranged from 82 to 98%. Optimisation of the LC separation allowed for substantial reduction of ionisation suppression in the electrospray source to a final level of <18% suppression. Time-of-flight mass spectrometry (TOF-MS) and MS/MS were compared for the analysis of sediment extracts, with the latter technique proving to be the most selective. The method detection limits achieved by LC-MS/MS were 15, 30 and 40 pg/g for E1, E2 and EE2, respectively, which were 13-fold lower than those obtained by LC-TOF-MS. Analysis of river sediments collected from the River Ouse, UK, showed the presence of the natural estrogens at sub-ng/g level. E1 levels ranged from 0.40 ng/g (dry weight) to 3.30 ng/g while E2 levels ranged from <0.03 to 1.20 ng/g and EE2 was never detected (<0.04 ng/g).  相似文献   

19.
蔡美贞 《色谱》2022,40(12):1111-1118
本草香颗粒态多环芳烃(PAHs)的分析对探究人体健康和环境安全的影响具有重要意义,但目前相关研究主要针对竹签香,对于配方更为复杂、日常使用更为频繁的本草香颗粒态PAHs定量分析研究十分有限且缺少针对性。为了研究本草香颗粒态PAHs的排放因子和排放特征,在自制的试验舱内采集5种本草香燃烧后的颗粒物,通过优化萃取溶剂、超声时间和仪器分析条件,建立了超声提取-气相色谱-质谱(GC-MS)测定本草香燃烧后颗粒物上所吸附的16种PAHs的方法。通过采集0.8 g样品,切取整片滤膜样品,使用正己烷-二氯甲烷(1∶1, v/v)进行超声萃取,经浓缩定容过滤后使用气相色谱-质谱分析,内标法定量。结果表明,16种PAHs在0.1~5.0 μg/mL范围内线性良好(相关系数r2>0.998),方法检出限(MDL)为0.4~3.8 ng/g;低、高2个水平的加标回收率分别为77.4%~99.5%和82.0%~101.3%;相对标准偏差(RSD)为0.7%~7.2%。5种本草香颗粒态PAHs的排放因子为4.60~11.89 μg/g。本草香的16种颗粒态PAHs中菲(Phe)的含量均为最高,所占比例为24.85%~42.59%,其次为荧蒽(Flu)、芘(Pyr)、 (Chr)、蒽(Ant)。本草香颗粒态PAHs中Phe的含量稳定且占比明显高于其他室内燃烧源,可将Phe作为本草香的颗粒态特征PAHs。颗粒态PAHs主要分布在3环和4环上,3环和4环PAHs占比之和为83.84%~96.31%。颗粒态的Phe/Flu比值可作为辨别不同室内燃烧源中燃香释放源的特征比值。该方法所需样品量少,灵敏度高,前处理操作简便,适用于燃香类产品中PAHs的快速检测,同时为了解本草香颗粒态PAHs分布规律和健康危害提供科学数据。  相似文献   

20.
优化了土壤中16种优控多环芳烃( PAHs)的分析方法,建立了一套完备的质量控制体系,解决了PAHs分析中常见的技术难点,如苯并(a)芘(BaP)回收率低,基质复杂的样品净化效果不理想,萘(Nap)和菲(Phe)挥发损失和环境本底影响等.样品经加速溶剂提取(ASE),固相萃取(SPE)净化,逐级减压浓缩,气相色谱质谱( GC - MS)测定,并以氘代苯并a芘(BaP - d12)作回收率指示物.实验比较了3种正相SPE吸附剂的效果,发现弗罗里硅土对BaP存在明显的降解现象,BaP的定量应使用同位素稀释法,以降低其分析不确定度;氧化铝对PAHs的吸附性过强,不利于样品净化;硅胶最为理想.PAHs的仪器检出限为0.26~5.7 pg,方法检出限为0.067 ~0.97 ng/g(干重),土壤基质加标回收率为71%~ 122%,相对标准偏差为1.6%~8.3%.将该法用于7个电子废物焚烧区域农田土壤样品的测定,PAHs含量在28~ 283 ng/g(干重)之间,样品中BaP-d12的回收率为90%~124%,各项质控指标符合检测要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号