首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

2.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

3.
实对称矩阵的两类逆特征值问题   总被引:84,自引:11,他引:84  
孙继广 《计算数学》1988,10(3):282-290
§gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是 所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的  相似文献   

4.
设R(C)为实(复)数域,H~(n×n)为n×n的Hermitian矩阵的集合。当A(∈C~(n×n))的特征值皆为实数时,如不特殊说明,约定A的特征值满足λ_1(A)≥…≥λ_n(A)。文[1]有如下不等式, 令A=B=[(?)],知(1)式一般不成立,(1)式是[1]将[2]的关于奇异值不等式  相似文献   

5.
可对称化矩阵特征值的扰动界   总被引:5,自引:3,他引:2  
在[1]中,Kahan证明了如下的定理:设A为n×n Hermite矩阵,B为n×n。可对称化矩阵,即存在非奇异矩阵Q,使得Q~(-1)BQ为实对角矩阵。又设A,B的特征值分别为λ_1  相似文献   

6.
正交矩阵的反问题及其最佳逼近   总被引:1,自引:0,他引:1  
一、引言R~(n×m)表示所有n×m实矩阵的集合,R_r~(n×m)表示R~(n×m)中秩为r的子集,■A,B∈R~(n×m),(A,B)=trB~TA表示内积,‖A‖=(A.A)~(1/2)表示矩阵A的范数,R(A),N(A)分别表示A的列空间和零空间。现考虑如下矩阵反问题:  相似文献   

7.
孙继广 《计算数学》1988,10(4):438-443
§1.引言 首先说明几个符号.R~(m×n)是所有m×n实矩阵的全体,R_r~(m×n)是R~(m×n)中秩为r的矩阵的全体,R~n=R~(n×1);A~T是矩阵A的转置,I~((n))是n×n单位矩阵,O是零矩阵;λ(Λ)是矩阵A的特征值的全体,|| ||_2是向量的欧氏范数和矩阵的谱范数,|| ||_F是矩阵的Frobenius范数; N(·)表示零空间.  相似文献   

8.
非齐次对称特征值问题   总被引:5,自引:0,他引:5  
引言 用SR~(n×n)表示所有。n×n实对称矩阵的集合。R~n表示n维线性空间。||·||_2表示向量的Euclid范数或矩阵的谱范数。 本文研究如下问题: 问题ISEP 给定矩阵A∈SR~n×n和向量b∈R~n,求实数λ和向量X∈R~n使得 AX=λX+b, (1) ||X||_2=1. (2) 若b=0,则问题ISEP就是通常的实对称矩阵特征值问题,若b≠0,则问题ISEP称为非齐次对称特征值问题,使(1)和(2)式成立的数λ和向量X分别称为非齐次特征值和相应的非齐  相似文献   

9.
线性流形上Hermite-广义反Hamilton矩阵反问题的最小二乘解   总被引:8,自引:0,他引:8  
张忠志  胡锡炎  张磊 《计算数学》2003,25(2):209-218
1.引言 令Rn×m表示所有n×m实矩阵集合,Cn×m表示所有n×m复矩阵集合,Cn=Cn×1,HCn×n表示所有n阶Hermite矩阵集合,UCn×n表示所有n阶酉矩阵集合,AHCn×n表示所有n阶反Hermite矩阵集合,R(A)表示A的列空间,N(A)表示A的零空间,A+表示A的Moore—Penrose广义逆,A*B表示A与B的Hadamard积,rank(A)表示矩阵A的秩.tr(A)表示矩阵A的迹.矩阵A,B的内积定义为(A,B)=tr(BHA),A,B∈Cn×m,由此内积诱导的范数为||A||=√(A,A)=[tr(AHA)]1/2,则此范数为Frobenius范数,并且Cn×m构成一个完备的内积空间,In表示n阶单位阵,i=√-1,记OASRn×n表示n×n阶正交反对称矩阵的全体,即  相似文献   

10.
§1.预备知识对向量及矩阵引进模的概念如下:向量x的模记为||x|| ||X|| sum from i=1 to n |x_i|矩阵A的模记为||A|| ||A||sum from i.j=1 to n |a_(ij)|引理1设A为n×n阶常数矩阵,且它的所有特征根λ_k(k=1,2,…,n)均具有负  相似文献   

11.
关于Rayleigh商矩阵   总被引:2,自引:2,他引:0  
刘新国  许雅各 《计算数学》1990,12(2):208-213
§1.预备知识 在不加注明的情况下,本文沿用[3]中的记号. 设A为n×n矩阵,Q及?为n×m矩阵,而且m相似文献   

12.
对称非负定矩阵反问题解存在的条件   总被引:51,自引:2,他引:49  
张磊 《计算数学》1989,11(4):337-343
R~(n×m)表示所有n×m阶实阵集合,R_r~(n×m)表示R~(n×m)中秩为r的子集.R_K表示所有K阶对称非负定阵集合.A≥0(>0)表示方阵A对称非负定(正定).R(A),N(A),A~+分别表示A的列空间,零空间和Moore-Penrose广义逆.dim(·)表示子空间维数,I_K表示K阶单位阵.||·||表示Frobenius范数.现考虑如下问题:  相似文献   

13.
1引言设矩阵A∈C~(n×n),B∈C~(m×m),Q∈C~(n×m)为列满秩矩阵,令R=AQ-QB.当R的范数很小的时候,我们分析矩阵B的特征值对A的特征值的逼近性.当A,B都是Hermite阵时,上述问题已经被Kahan解决.近年来,对可对角化矩阵的情形,取得了一些新的成果.[4][5][6]中给出了几个范数不等式,并应用于矩阵特征值  相似文献   

14.
R~(n×n)表示 n 阶实矩阵组成的集合,R~n 表示 n 维实向量空间.本文中的矩阵假定都属于 R~(n×n).给定一个矩阵 A∈R~(n×n),A>0(A≥0)表示 A 是一个对称正定(非负定)矩阵;A 称为正(非负)矩阵,如 A 的元素都是正的(非负的).矩阵 A 称为稳定矩阵,如A 的特征值的实部都是负的.  相似文献   

15.
其中 x(t)是 n 维向量,A(t)=(a_((?)j)(t))_(n×n)是连续函数矩阵。我们讨论系统(1)的零解稳定性。当 A(t)是常数矩阵时已经得到解决,当 A(t)是时变情形比较复杂。Vinorgradov于1952年证明了,即使 A(t)的特征值全是常数且都具有负实部,系统〈1〉仍不能断定零解  相似文献   

16.
R~(n×n)表示 n 阶实矩阵组成的集合,R~n 表示 n 维实向量空间.本文中的矩阵假定都属于 R~(n×n).给定一个矩阵 A∈R~(n×n),A>0(A≥0)表示 A 是一个对称正定(非负定)矩阵;A 称为正(非负)矩阵,如 A 的元素都是正的(非负的).矩阵 A 称为稳定矩阵,如A 的特征值的实部都是负的.  相似文献   

17.
我们知道,随机矩阵是研究马尔可夫链的重要工具,关于它的最大模特征值问题早已完美地解决了.本文的目的是讨论一类特殊的随机矩阵的特征值分布与行列式的估计.另外,我们还将对一类特殊的轮回矩阵作出其行列式的估计.定义1.设实矩阵 A=(ajk)_(n×n)满足条件ajk≥0,j,k=1,…,n,sum from k=1 to n ajk=s(>0),j=1,…,n,(1)则称矩阵 A 为带行和为 s 的广义随机矩阵,简记为 A∈S_t,特别,当 s=1时,矩阵 A 就是通常的随机矩阵或叫做转移矩阵.  相似文献   

18.
广义严格对角占优阵的判定程序   总被引:3,自引:1,他引:2  
1 引言和符号 在本文中,均采用下列符号而不再重申.恒用N表示前n个自然数的集合;而用Mn(C)和Mn(R)分别表示所有n阶复矩阵和所有n阶实矩阵的集合. Z_N={A|A=(a_(ij))_(n×n)∈Mn(R),a_(ij)≤0,i,j∈N,i≠j},I恒表示单位矩阵. 如果A∈Mn(R)且A的所有元素都为非负实数,则称A为非负方阵,并记为A≥0;若A的所有元素都为正数,则称A为正矩阵,并记为A>0. 对A=(a_(ij))(n×n)∈Mn(C),令A_i(A)=sum from j=1 j≠i to n (|a_(ij)|(i=1、2…… n)) ;若把A的非零元用1代替 而得到—个n阶(0,1)矩阵。称为A的导出矩阵。记为;而把A的比较矩阵记为 u(A)=(b_(ij))_(n×n))其中b_(ij)=|a_(ij)|,b_(ij)=-|a_(ij)|(i,j∈N i≠j)  相似文献   

19.
考虑二阶非线性矩阵微分系统t∈[a,+∞)a≥0,其中关于R、Q、Y、F的基本假设和解的振动定义及有关记号如文[4]引言所述,记n阶实对称矩阵的全体为S~(n×n),A_k(a_(ij))_(k×k),容易证明以下结论,其中A,B∈S~(n×n)。  相似文献   

20.
等式约束加权线性最小二乘问题的解法   总被引:1,自引:0,他引:1  
1 引言 在实际应用中常会提出解等式约束加权线性最小二乘问题 min||b-Ax||_M,(1.1) x∈C~n s.t.Bx=d, 其中B∈C~(p×n),A∈C~(q×n),d∈C~p,b∈C~q,M∈C~(q×q)为Hermite正定阵. 对于问题(1.1),目前已有多种解法,见文[1—3).本文将利用广义逆矩阵的知识,给出(1.1)的通解及迭代解法.本文中关于矩阵广义逆与投影算子(矩阵)的记号基本上与文[4]的相同.例如,A~+表示A的MP逆,P_L表示到子空间L上的正交投影算子,λ_(max)(MAY)表示矩阵M~(1/2)AY的最大特征值.我们还要用到广义BD逆的概念: 设A∈C~(n×n),L为C~n的子空间,则称A_(L)~(+)=P_L(AP_L+P_L⊥)~+为A关于L的广义BD逆.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号