首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
线性约束下的矩阵束最佳逼近及其应用   总被引:22,自引:1,他引:21  
戴华 《计算数学》1989,11(1):29-37
1.引言 用C~(n×m)表示所有n×m阶复矩阵的集合,R~(n×m)表示所有n×m阶实矩阵的集合,R_r~(n×m)表示R~(n×m)中矩阵秩为r的子集.任取A,B∈R~(n×m),定义内积和范数为  相似文献   

2.
线性流形上对称正交对称矩阵逆特征值问题   总被引:2,自引:0,他引:2  
周富照  胡锡炎  张磊 《计算数学》2003,25(3):281-292
1.引言 令R~(n×m)表示所有n×m阶实矩阵集合;OR~(n×n)表示所有n阶正交矩阵全体;A~+表示A的Moore-penrose广义逆;I_к表示К阶单位阵;SR~(n×n)表示n阶实对称矩阵的全体;rank(A)表示A的秩;||·||是矩阵的Frobenius范数;对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与B的Hadamard乘积,其定义为A*B=(a_(ij),b_(ij))。  相似文献   

3.
两类矩阵反问题解的稳定性   总被引:1,自引:0,他引:1  
1 引 言 用R~(n×m)表示所有n×m实矩阵的全体,R_r~(n×m)表示R~(n×m)中矩阵秩为r的子集。A>0(A≥0)表示方阵A是实对称正定(半正定)矩阵。SR_+~(n×n)(SR_0~(n×n)表示所有n×n实  相似文献   

4.
实对称带状矩阵特征值反问题   总被引:1,自引:1,他引:0  
戴华 《计算数学》1988,10(1):107-111
用R~(n×m)表示所有n×m实矩阵的集合;OR~(n×n)表示所有n×n正交矩阵的集合;S_(n,r)表示所有带宽为2r+1的n阶实对称矩阵的集合;||·||_F表示矩阵的Frobenius范数,||·||表示向量的Euclid范数.任取A∈R~(n×m),满足AA~-A=A 的A~-∈R~(m×n)叫做A的内逆,满足AA_l~-A=A和(AA_l~-)~T=AA_l~-的A_l~-∈R~(m×n)叫做A的最小二乘广义逆,  相似文献   

5.
线性流形上实对称矩阵最佳逼近   总被引:27,自引:4,他引:23  
戴华 《计算数学》1993,15(4):478-488
1.引言 首先介绍一些记号,IR~(n×m)表示所有n×m实矩阵的全体,SIR~(n×n)表示所有n×n实对称矩阵的全体,OIR~(n×n)表示所有n×n正交矩阵的全体,I_n表示n阶单位矩阵,A~T和A~+分别表示矩阵A的转置和Moore-Penrose广义逆。对A=(a_(ij)),B=(b_(ij))∈IR~(n×m),A*B表示A与B的Hadamard积,定义为A*B=(a_(ij)b_(ij)),并且定义A与B的内积  相似文献   

6.
§1 问题的提法R~(n×m)表示所有 n×m 阶实阵集合,(A)表示矩阵 A 的列空间,A~+表示 A 的 Moore-Penrose 广义逆,P_A=AA~+表示到(A)的正交投影核子;I_n 表示 n 阶单位阵,‖·‖_F 表示 Frobenius 范数。问题Ⅰ给定X,Y∈~(n×m),Λ=diag(λ_1,λ_2,…,λ_m)∈R~(m×m),找 A∈R~(n×m),使得问题Ⅱ给定 A~*∈R~(n×n),找∈S_E,使得‖A~*-‖_F=‖A~*-A‖_F,其中 S_E是问题Ⅰ的集合。本文讨论问题Ⅰ有解的充分与必要条件,且求出 S_E的表达式,同时给出的表达式。  相似文献   

7.
R~(n×n)表示 n 阶实矩阵组成的集合,R~n 表示 n 维实向量空间.本文中的矩阵假定都属于 R~(n×n).给定一个矩阵 A∈R~(n×n),A>0(A≥0)表示 A 是一个对称正定(非负定)矩阵;A 称为正(非负)矩阵,如 A 的元素都是正的(非负的).矩阵 A 称为稳定矩阵,如A 的特征值的实部都是负的.  相似文献   

8.
R~(n×n)表示 n 阶实矩阵组成的集合,R~n 表示 n 维实向量空间.本文中的矩阵假定都属于 R~(n×n).给定一个矩阵 A∈R~(n×n),A>0(A≥0)表示 A 是一个对称正定(非负定)矩阵;A 称为正(非负)矩阵,如 A 的元素都是正的(非负的).矩阵 A 称为稳定矩阵,如A 的特征值的实部都是负的.  相似文献   

9.
一类对称正交对称矩阵反问题的最小二乘解   总被引:19,自引:1,他引:18  
1 引言 本文记号R~(n×m),OR~(n×n),A~+,I_k,SR~(n×n),rank(A),||·||,A*B,BSR~(n×n)和ASR~(n×n)参见[1].若无特殊声明文中的P为一给定的矩阵且满足P∈OR~(n×n)和P=P~T. 定义1 设A=(α_(ij))∈R~(n×n).若A满足A=A~T,(PA)~T=PA则称A为n阶对称正交对称矩阵;所有n阶对称正交对称矩阵的全体记为SR_P~n.若A∈R~(n×n)满足A~T=A,(PA)~T=-PA,则称A为n阶对称正交反对称矩阵;所有n阶对称正交反对  相似文献   

10.
线性流形上Hermite-广义反Hamilton矩阵反问题的最小二乘解   总被引:8,自引:0,他引:8  
张忠志  胡锡炎  张磊 《计算数学》2003,25(2):209-218
1.引言 令Rn×m表示所有n×m实矩阵集合,Cn×m表示所有n×m复矩阵集合,Cn=Cn×1,HCn×n表示所有n阶Hermite矩阵集合,UCn×n表示所有n阶酉矩阵集合,AHCn×n表示所有n阶反Hermite矩阵集合,R(A)表示A的列空间,N(A)表示A的零空间,A+表示A的Moore—Penrose广义逆,A*B表示A与B的Hadamard积,rank(A)表示矩阵A的秩.tr(A)表示矩阵A的迹.矩阵A,B的内积定义为(A,B)=tr(BHA),A,B∈Cn×m,由此内积诱导的范数为||A||=√(A,A)=[tr(AHA)]1/2,则此范数为Frobenius范数,并且Cn×m构成一个完备的内积空间,In表示n阶单位阵,i=√-1,记OASRn×n表示n×n阶正交反对称矩阵的全体,即  相似文献   

11.
实对称矩阵的两类逆特征值问题   总被引:84,自引:11,他引:84  
孙继广 《计算数学》1988,10(3):282-290
§gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是 所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的  相似文献   

12.
一类矩阵反问题及其数值解法   总被引:6,自引:0,他引:6  
张磊 《计算数学》1987,9(4):431-437
1.问题的提法 R~(n×m)表示所有n×m阶实矩阵的集合,R~(n×1)=R~n,R_r~(n×m)表示R~(n×m)中秩为r的子集.||·||取Frobenius范数.若?0≠x∈R~n,α≥0,有x~TAx≥αx~Tx(>αx~Tx),则记为A≥α(>α).若A≥0(>0)且A=A~T,则A为对称半正定(正定)阵. 令  相似文献   

13.
对称非负定矩阵反问题解存在的条件   总被引:51,自引:2,他引:49  
张磊 《计算数学》1989,11(4):337-343
R~(n×m)表示所有n×m阶实阵集合,R_r~(n×m)表示R~(n×m)中秩为r的子集.R_K表示所有K阶对称非负定阵集合.A≥0(>0)表示方阵A对称非负定(正定).R(A),N(A),A~+分别表示A的列空间,零空间和Moore-Penrose广义逆.dim(·)表示子空间维数,I_K表示K阶单位阵.||·||表示Frobenius范数.现考虑如下问题:  相似文献   

14.
1.模糊矩阵及半序关系若矩阵 A=[a_(ij)]_(n×m),其中0≤a_(ij)≤1,则称 A 是一个 n×m 阶模糊矩阵,这种模糊矩阵的全体记为 M_(n×m).任意 A=[a_(ij)]_(n×m),B=[b_(ij)]_(n×m) 是两个 n×m 阶模糊矩阵,若 b_(ij)≤a_(ij),1≤i≤n,1≤j≤m,记为 B≤A(或等价记为 A≥B);关系“≤”(或“≥”)构成了 M_(n×m)中的一个半序关系.在 M_(n×m)中定义:  相似文献   

15.
矩阵正定性的进一步推广   总被引:49,自引:1,他引:48  
§1 引 言 在历史上,正定矩阵的出现最先是在二次型与Hermite型的研究中。它的常规定义是(为简便起见,本文恒用R表示实数域;R~(n×1)表示数域R上所有n×1矩阵的集合;R~(n×n)表示数域R上所有n×n矩阵的集合;X~τ表示矩阵X的转置):  相似文献   

16.
线性流形上的逆特征值问题   总被引:6,自引:1,他引:5  
1 问题的提法先说明一些记号,R~(n×m)表示所有n×m实矩阵的全体。OR~(n×m)表示所有n×n正交矩阵的  相似文献   

17.
孙继广 《计算数学》1988,10(4):438-443
§1.引言 首先说明几个符号.R~(m×n)是所有m×n实矩阵的全体,R_r~(m×n)是R~(m×n)中秩为r的矩阵的全体,R~n=R~(n×1);A~T是矩阵A的转置,I~((n))是n×n单位矩阵,O是零矩阵;λ(Λ)是矩阵A的特征值的全体,|| ||_2是向量的欧氏范数和矩阵的谱范数,|| ||_F是矩阵的Frobenius范数; N(·)表示零空间.  相似文献   

18.
实对称矩阵广义特征值反问题   总被引:10,自引:0,他引:10  
本文研究如下实对称矩阵广义特征值反问题: 问题IGEP,给定X∈R~(n×m),1=diag(λ_II_k_I,…,λ_pI_k_p)∈R~(n×m),并且λ_I,…,λ_p互异,sum from i=1 to p(k_i=m,求K,M∈SR~(n×n),或K∈SR~(n×n),M∈SR_0~(n×m),或K,M∈SR_0~(n×n),或K∈SR~(n×n),M∈SR_+~(n×n),或K∈SR_0~(n×n),M∈SR_+~(n×n),或K,M∈SR_+~(n×m), (Ⅰ)使得 KX=MXA, (Ⅱ)使得 X~TMX=I_m,KX=MXA,其中SR~(n×n)={A∈R~(n×n)|A~T=A},SR_0~(n×n)={A∈SR~(n×n)|X~TAX≥0,X∈R~n},SR_+~(n×n)={A∈SR~(n×n)|X~TAX>0,X∈R~n,X≠0}. 利用矩阵X的奇异值分解和正交三角分解,我们给出了上述问题的解的表达式.  相似文献   

19.
一类广义半正定线性方程组的直接解法   总被引:3,自引:1,他引:2  
1 引言 在具有等式约束的二次规划或椭圆型边值问题离散化分析中经常会遇到解线性方程组 (1)其中A∈R~(m×m)为对称正定矩阵,B∈R~(n×m)为行满秩矩阵,f∈R~m,g∈R~n为右端向量. 为了讨论的方便,首先引进, 定义1 若G∈R~(N×N),且对任何非零向量x∈R~N都有x~TGx>0(≥0),则称矩阵G  相似文献   

20.
矩阵方程ATXB+BTXTA=D的极小范数最小二乘解   总被引:1,自引:0,他引:1  
1引言本文用Rm×n表示所有m×n实矩阵全体,ORn×n,ASRn×n分别表示n×n实正交矩阵类与反对称矩阵类.‖·‖F表示矩阵的Frobenius范数,A+为矩阵A的Moore-Penrose广义逆,A*B与A(?)B分别表示矩阵4与B的Hadamard乘积及Kronecker乘积,即若A=(aij),B=(bij),则A*B=(ajibij),A(?)B=(aijB),vec4表示矩阵A的按行拉直,即若A=[aT1,aT2,…,aTm],其中ai为A的行向量,则vecA=(a1a2…am)T.设A∈Rn×m,B∈Rp×m,D∈Rm×m,我们考虑不相容线性矩阵方程ATXB+BTXTA=D(1.1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号