首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
fs pulsed lasers at an intensity of the order of 1018 W/cm2, with a contrast of 10−5, were employed to irradiate thin foils to study the target-normal-sheath-acceleration (TNSA) regime. The forward ion acceleration was investigated using 1/11 µm thickness foils composed of a metallic sheet on which a thin reduced graphene oxide film with 10 nm thickness was deposited by single or both faces. The forward-accelerated ions were detected using SiC semiconductors connected in time-of-flight configuration. The use of intense and long pre-pulse generating the low contrast does not permit to accelerate protons above 1 MeV because it produces a pre-plasma destroying the foil, and the successive main laser pulse interacts with the expanding plasma and not with the overdense solid surface. Experimental results demonstrated that the maximum proton energies of about 700 keV and of 4.2 MeV carbon ions and higher were obtained under the condition of the optimal acceleration procedure. The measurements of ion energy and charge states confirm that the acceleration per charge state is measurable from the proton energy, confirming the Coulomb–Boltzmann-shifted theoretical model. However, heavy ions cannot be accelerated due to their mass and low velocity, which does not permit them to be subjected to the fast and high developed electric field driving the light-ion acceleration. The ion acceleration can be optimized based on the laser focal positioning and on the foil thickness, composition, and structure, as it will be presented and discussed.  相似文献   

2.
Energetic ions have been obtained irradiating a tungsten target with a Q-switched Nd:Yag laser, 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and power density of the order of 1010?W/cm2. The laser-target interaction induces a strong metal etching with production of plasma in front of the target. The plasma contains neutrals and ions with high charge state. Time-of-flight measurements are presented for qualitative analysis of the ion production. A cylindrical electrostatic ion analyzer permits measuring of the yield of emitted ions, the charge state of detected ions and the ion energy distribution. Measurements indicate that, at a laser fluence of the order of 100?J/cm2, the charge state may reach 9+ and the ion energy reaches about 5?keV. The ion energy distribution is given as a function of the charge state. Experimental results indicate that an electrical field is developed along the normal to the plane of the target surface, which accelerates the ions up to high velocity. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the author has corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

3.
The nonequilibrium plasma generated by nanosecond laser pulse is characterized using a SiC detector connected in time-of-flight configuration to measure the radiations emitted from the plasma. Different metallic targets were irradiated by the pulsed laser at an intensity of 1010 W/cm2 and 200 mJ pulse energy. The SiC allows detecting ultraviolet radiations and soft X-rays, electrons, and ions. The obtained plasma has a temperature of the order of tens to hundreds eV depending on the atomic number of the irradiated target and ion accelerations of the order of 100 eV per charge state.  相似文献   

4.
The fs laser facility in Bordeaux, delivering an intensity of 1018 W/cm2 at normal incidence on thin foils, has been used to induce forward electron and ion acceleration in target-normal-sheath-acceleration (TNSA) regime. Micrometric thin foils with different composition, thickness, and electron density, were prepared to promote the charge particle acceleration in the forward direction. The plasma electron and ion emission monitoring were performed on-line using SiC semiconductor detectors in time-of-flight (TOF) configuration and gaf-chromics films both covered by thin absorber filters. The experiment has permitted to accelerate electrons and protons. A special attention was placed to detect relativistic hot electrons escaping from the plasma and cold electrons returning to the target position. The electron energies of the order of 100 keV and of about 1 keV were detected as representative of hot and cold electrons, respectively. A high cold electron contribution was measured using low-contrast fs laser, while it is less evident using high-contrast fs lasers. The charge particle acceleration depends on the laser parameters, irradiation conditions, and target properties, as will be presented and discussed.  相似文献   

5.
利用不同能量的质子在大气环境中辐照拟南芥的含水种子,能量从1.1MeV到6.5MeV.根据模拟计算结果,相应能量的离子对种子的损伤区域分别为胚的浅层、胚的一半和整个胚.本实验中,具有较高能量的质子可以完全均匀地作用于拟南芥生长、发育及遗传密切相关的胚茎端分生组织,而能量较低的质子则不能直接作用于茎端分生组织.实验所用质子注量范围为4×109ions/cm2—1×1014ions/cm2.实验结果显示,虽然拟南芥种子的发芽率和幼苗存活率随离子注量增加都呈现下降的趋势,但对应于不同的胚损伤区域,即在不同的入射质子能量条件下,注量曲线具有各自的特征.实验结果显示,拟南芥种子中除了胚茎端分生组织作为对离子辐照敏感的辐射主靶外,茎端分生组织之外的胚区域可能作为离子辐射次靶,影响到最终的辐射生物学效应. 关键词: 离子辐照 拟南芥 胚区域 生物效应  相似文献   

6.
Advanced targets based on graphene oxide and gold thin film were irradiated at high laser intensity (1018–1019 W/cm2) with 50‐fs laser pulses and high contrast (108) to investigate ion acceleration in the target‐normal‐sheath‐acceleration regime. Time‐of‐flight technique was employed with SiC semiconductor detectors and ion collectors in order to measure the ion kinetic energy and to control the properties of the generated plasma. It was found that, at the optimized laser focus position with respect to the target, maximum proton acceleration up to about 3 MeV energy and low angular divergence could be generated. The high proton energy is explained as due to the high electrical and thermal conductivity of the reduced graphene oxide structure. Dependence of the maximum proton energy on the target focal position and thickness is presented and discussed.  相似文献   

7.
Proton acceleration can be induced by non-equilibrium plasma developed by high-intensity laser pulses, at 1016 W/cm2, irradiating different types of thin polyethylene targets. The process of proton acceleration and directive yield emission was investigated, optimizing the laser parameters, the irradiation conditions, and the target properties. The use of 600 J pulse energy, a laser focalization inducing self-focusing effects and advanced targets with embedded nanoparticles and optimal thicknesses, has permitted to accelerate forward protons up to the energies of about 6 MeV and amount of the order of 1015 H+/pulse. High proton energy is obtained using thin foils enriched with gold nanoparticles, whereas high proton yield is obtained using targets with a thickness of about 10 μm. The plasma diagnostics using SiC semiconductor detectors in time-of-flight configuration was fundamental to monitor the optimal conditions to improve the plasma processes concerning the ion acceleration and the X-ray and relativistic electron emission.  相似文献   

8.
The excellent physical and chemical properties and the radiation hardness of silicon carbide (SiC) render this material particularly suitable for the realization of radiation detectors. In this paper we describe the main properties of SiC and the processes needed to realize good performance detectors. To this purpose, we made SiC Schottky diodes that were electrical characterized by using different techniques. In order to test the radiation hardness, the diodes were irradiated with different ion beams and the analysis of the electrical measurements allowed to identify the defects responsible of the device degradation. These detectors have been used to monitor the multi-MeV ions of the plasma emitted by irradiation of various targets with 300-ps laser at high intensity (1016?W/cm2). These measurements highlighted that the use of SiC detectors enhances the sensitivity to ions detection due to the cutting of the visible and soft ultraviolet radiation emitted from plasma. The small rise time and the proportionality to ion energy evidence that these detectors are a powerful tool for the characterization of ion generated by high-intensity pulsed laser.  相似文献   

9.
用20—1020 keV单能质子刻度CR-39固体核径迹探测器   总被引:1,自引:0,他引:1       下载免费PDF全文
用北京师范大学2×1.7MV串列加速器和400 kV高压倍加器产生的20—1020 keV单能质子束对CR-39固体核径迹探测器进行了刻度.为了保证质子的单能性和固体核径迹探测器上径迹密度不能超过106/cm2的要求,对两台加速器分别采用了不同方法控制质子辐照数量.在串列加速器上采用了狭缝加转盘的方法,在高压倍加器上采用了100 ns单次高压脉冲扫描束流的方法,既保持了质子的单色性,又达到了质子注量小于106/cm2关键词: 单能质子 固体核径迹探测器 CR-39  相似文献   

10.
A Nd:YAG laser with 109 W/cm 2 pulse intensity, operating at 532 nm wavelength, is used to ablate Ta and Cu targets placed in vacuum. The ablation process generates a plasma in front of the target surface, which expands along the normal to target surface. The ion and electron emissions from the plasma were measured by Faraday cups placed at different angles with respect to the normal to target surface. In the range of laser intensities from 107 to 109 W/cm2, the fast electron yield is lower than the ion yield and it increases at higher laser intensities. The ablation threshold, the emission yield, the ion and electron average energies and the plasma ion and electron temperatures were measured for ion and fast electron streams.  相似文献   

11.
High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015?W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1?MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.  相似文献   

12.
The energy distributions of protons emitted from the Coulomb explosion of hydrogen clusters by an intense femtosecond laser have been experimentally obtained. Ten thousand hydrogen clusters were exploded, emitting 8.1-keV protons under laser irradiation of intensity 6 × 1016W/cm2. The energy distributions are interpreted well by a spherical uniform cluster analytical model. The maximum energy of the emitted protons can be characterized by cluster size and laser intensity. The laser intensity scale for the maximum proton energy, given by a spherical cluster Coulomb explosion model, is in fairly good agreement with the experimental results obtained at a laser intensity of 1016–1017 W/cm2 and also when extrapolated with the results of three-dimensional particle simulations at 1020–1021 W/cm2. Energetic proton generation in low-density plastic (C5H10) foam by intense femtosecond laser pulse irradiation has been studied experimentally and numerically. Plastic foam was successfully produced by a sol-gel method, achieving an average density of 10 mg/cm3. The foam target was irradiated by 100-fs pulses of a laser with intensity 1 × 1018 W/cm2. A plateau structure extending up to 200 keV was observed in the energy distribution of protons generated from the foam target, with the plateau shape explained well by Coulomb explosion of lamella in the foam. The laser-foam interaction and ion generation were studied qualitatively by two-dimensional particle-in-cell simulations, which indicated that energetic protons are mainly generated by the Coulomb explosion. From the results, the efficiency of energetic ion generation in a low-density foam target by Coulomb explosion is expected to be higher than in a gas-cluster target.  相似文献   

13.
Electrons with abnormally high energies of up to 16 keV are detected from an iron target irradiated by ions (H+, Fe+, Fe2+, Fe3+) with energies ranging from 20 to 100 keV from the plasma of a high-power femtosecond laser pulse with an intensity of 1016 J/(s cm2). These electrons indicate that the energy of an incident ion is almost completely transferred to an electron knocked out of the target. In a range of 6–16 keV, the spectrum of electrons knocked out of the K shell of iron atoms by protons with an energy of 22 ± 2 keV is quasi-exponential with an exponent of 4 keV. For 8-keV electrons, the double differential cross section for ionization by such protons is estimated as 10?7 b/(eV sr).  相似文献   

14.
Measurement of both spin-lattice and spin-spin relaxation time for protons in NH4TaWO6 suggest rapid ionic motion in this compound. Analysis of the data gives an activation energy of ~0.3 eV and an attempt frequency of ~1×1010 sec?1. The data is used to suggest a model for ionic motion which involves movement of individual protons rather than the NH4+ ion.  相似文献   

15.
The temperature of laser-generated pulsed plasmas is an important property that depends on many parameters, such as the particle species and the time elapsed from the laser interaction with the matter and the surface characteristics.

Laser-generated plasmas with low intensity (<1010 W/cm2) at INFN-LNS of Catania and with high intensity (>1014 W/cm2) in PALS laboratory in Prague have been investigated in terms of temperatures relative to ions, electrons, and neutral species. Time-of-flight (ToF) measurements have been performed with an electrostatic ion energy analyzer (IEA) and with different Faraday cups, in order to measure the ion and electron average velocities. The IEA was also used to measure the ion energy, the ion charge state, and the ion energy distribution.

The Maxwell–Boltzmann function permitted to fit the experimental data and to extrapolate the ion temperature of the plasma core.

The velocity of the neutrals was measured with a special mass quadrupole spectrometer. The Nd:Yag laser operating at low intensity produced an ion temperature core of the order of 400 eV and a neutral temperature of the order of 100 eV for many ablated materials. The ToF of electrons indicates the presence of hot electron emission with an energy of ~1 keV.  相似文献   

16.
Results of experimental investigations of fast-proton production in a laser plasma are presented for the case where the intensity of laser radiation at the targets is 2 × 1018 W/cm2. Three processes of fast-proton acceleration in laser plasma are investigated: (1) the acceleration of protons from the front surface toward the laser pulse, (ii) the acceleration of protons from the front surface of the target toward its interior, and (iii) the acceleration of protons from the rear foil surface in the outward direction. The activation procedure and CR-39 tracker detectors featuring a set of various-thickness aluminum filters were used to record fast protons. It turned out that the proton-acceleration process is the most efficient in the case of proton acceleration from the rear foil surface in the outward direction. Experimental results revealed that about N p = 107 protons of energy in the region E p > 1.9 MeV that are accelerated from the target surface toward a laser ray, N p = 4× 107 protons of energy in the region E p > 1.9 MeV that are accelerated fromthe front surface of the target toward its interior, and N p = 4×108 protons of energy in the region E p > 1.9 MeV that are accelerated from the rear foil surface in the outward direction are generated at a laser-radiation intensity of 2 × 1018 W/cm2 at the surface of aluminum, copper, and titanium targets. Experimental investigations aimed at optimizing the process of proton acceleration from the rear surface of aluminum foils were performed by varying the foil thickness over the range between 1 and 100 μm. The results of these experiments showed that there is an optimum foil thickness of 10 μm, in which case protons of maximum energy 5 MeV are generated.  相似文献   

17.
Proton acceleration using high-intensity laser pulses, at 1016 W/cm2 was studied irradiating different types of thin metal and plastic targets having 1-micron thickness. The maximization of the proton energy process was investigated optimizing the laser parameters, the irradiation conditions and the target properties. Employing 600–700 J laser pulse energy, a focalization inducing self-focusing effects and using targets with optimized thickness, it was possible to accelerate protons up to energies of above 8 MeV. The time-of-flight diagnostics has allowed to monitor the plasma properties and to control the ion acceleration process.  相似文献   

18.
张治国  刘天伟  徐军  邓新禄  董闯 《物理学报》2005,54(7):3257-3262
采用静电探针技术对微波电子回旋共振(MW-ECR) 等离子体进行了诊断,利用等离子体增强 非平衡磁控溅射(PE-UMS)法在常温下制备了Zr-N薄膜, 通过EPMA,XRD,显微硬度对膜的 结构和性能进行评价.实验结果表明,随氮气流量增加,总的等离子体密度从807×109c m-3增加到831×109cm-3然后逐渐减小为752×10 9cm-3;而N2+密度则从312×108< /sup>cm-3线性递增到335×109cm-3;电子温度变化 不大.对薄膜而言,随N2+密度增大,样品中氮含量增加,而晶粒逐 渐变小,当样品中N/ Zr原子比达到14时,薄膜中出现亚稳态的Zr3N4相以及非晶相, 在更高氮流量下,整 个薄膜转变为非晶态.与此相应,薄膜硬度由最初的225GPa增大到2678GPa 然后逐渐减 小到1982GPa. 关键词: 氮化锆薄膜 ECR等离子体 磁控溅射 诊断  相似文献   

19.
利用1064 nm Nd:YAG激光器研究了激光诱导铁条等离子体的特征参数。为了减小测量误差和谱线自发辐射跃迁几率不确定性带来的计算误差,采用改进的迭代Boltzmann方法精确求解铁等离子体的电子温度为8058 K。Lorentz函数拟合Fe I 376.553 nm得到等离子体的电子数密度为8.71017 cm-3。分析表明等离子体的加热机制主要是逆轫致过程,其吸收系数是0.14 cm-1。实验数据证实激光诱导铁等离子体处于局部热力学平衡状态和光学薄状态。  相似文献   

20.
Lithium ions are widely used in many scientific fields; in order to get these ions, it is necessary to study lithium plasma process thoroughly. Recently, a hybrid 7Li3+ ion source has been designed and tested at Peking University (PKU). To understand the lithium plasma behaviour inside the plasma chamber and to provide some guidelines for ion source optimization to generate 7Li3+, a numerical model based on the plasma equilibrium equations is developed in this work, which is helpful not only for our ion source, but also for understanding the physical process of lithium plasma from ECR ion sources with different frequencies. This model can describe the density and fraction of lithium ions in various system parameters. The dependences of the Li+, Li2+, and Li3+ ion density and fraction on electron temperature, gas pressure, microwave power, surface ionizer, and the magnetic field are investigated systematically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号