首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
以聚偏氟乙烯(PVDF)和硅藻土为原料,通过静电纺丝法制备PVDF@硅藻土复合纤维膜,用于锂离子电池隔膜。 研究了隔膜的吸液率、热稳定性和电化学性能等。 添加硅藻土可有效提高复合膜的电解液吸收率和电化学性能,其中吸液率可达623.6%,相比于PVDF膜和聚丙烯(PP)膜具有优异的循环性能和倍率性能。  相似文献   

2.
隔膜是双电层电容器和混合型电池-超级电容器等电化学储能器件的重要组成元件.本文采用1 mol?L-1四乙基四氟硼酸铵的丙烯碳酸酯电解液制备了基于活性炭的扣式双电层电容器,并采用1 mol?L-1六氟磷酸锂锂离子电解液制备了(LiNi0.5Co0.2Mn0.3O2+活性炭)/石墨体系的混合型电池-超级电容器.研究了不同类型隔膜的物理化学性能,以及其对双电层电容器和混合型电池-超级电容器的电化学性能的影响.四种隔膜分别是无纺布聚丙烯毡、多孔聚丙烯薄膜、Al2O3涂层的聚丙烯薄膜和纤维素纸隔膜.进行了表面形貌、差示扫描量热、电解液吸液量和表观接触角测试表征.电化学测试表明,采用纤维素隔膜的双电层电容器具有最高的比电容和更优的倍率性能,电容器的自放电性能差别不大.而对于混合型电池-超级电容器,采用聚丙烯薄膜和无纺布聚丙烯毡隔膜器件的比容量比其它器件约高20%,且采用纤维素隔膜的器件自放电率最高.  相似文献   

3.
隔膜是双电层电容器和混合型电池-超级电容器等电化学储能器件的重要组成元件.本文采用1 mol?L-1四乙基四氟硼酸铵的丙烯碳酸酯电解液制备了基于活性炭的扣式双电层电容器,并采用1 mol?L-1六氟磷酸锂锂离子电解液制备了(LiNi0.5Co0.2Mn0.3O2+活性炭)/石墨体系的混合型电池-超级电容器.研究了不同类型隔膜的物理化学性能,以及其对双电层电容器和混合型电池-超级电容器的电化学性能的影响.四种隔膜分别是无纺布聚丙烯毡、多孔聚丙烯薄膜、Al2O3涂层的聚丙烯薄膜和纤维素纸隔膜.进行了表面形貌、差示扫描量热、电解液吸液量和表观接触角测试表征.电化学测试表明,采用纤维素隔膜的双电层电容器具有最高的比电容和更优的倍率性能,电容器的自放电性能差别不大.而对于混合型电池-超级电容器,采用聚丙烯薄膜和无纺布聚丙烯毡隔膜器件的比容量比其它器件约高20%,且采用纤维素隔膜的器件自放电率最高.  相似文献   

4.
设计并合成了一系列基于苯环和环状碳酸酯的有机分子双(2,3-环碳酸甘油酯)对苯二甲酸酯、三(2,3-环碳酸甘油酯)均苯三甲酸酯和四(2,3-环碳酸甘油酯)均苯四甲酸酯,采用倍率测试、恒流充放电测试、交流阻抗测试和扫描电子显微镜测试等手段研究了这些添加剂对锂离子电池性能的影响.通过对循环20周前后球化石墨电极形貌的对比,发现含均苯四甲酸酯和均苯三甲酸酯的电解液球化石墨电极表面相对于空白电解液可形成一层致密而稳定的固体电解质中间相膜(SEI),从而优化电极-电解液的界面性能,且电池电阻增加较小;在测试电池的倍率性能时发现,均苯四甲酸酯的加入可以改善电池的倍率性能,而对苯二甲酸酯的加入则未能改善电池的循环性能.  相似文献   

5.
为了改善锂电隔膜的亲液性和耐高温性,以醋酸纤维素为成膜材料,利用相转化法制备了新型锂电隔膜,通过形貌和孔道结构表征、亲液性能和耐热性能测试对醋酸纤维素隔膜的基本性能进行研究,并将该隔膜装配成锂离子电池进行充放电性能测试. 结果表明,醋酸纤维素隔膜具有均匀的微孔结构,孔隙率达到65%,约为传统聚烯烃隔膜的1.5倍;纤维素材料的良好亲液性和高孔隙率结构改善了隔膜的吸液性能,其吸液率达到285%;该隔膜在150 oC、30 min的热处理条件下未发生明显的热收缩. 鉴于上述优点,相对于市售PE隔膜,醋酸纤维素隔膜所装配锂离子电池显示出更优的循环性能和倍率性能.  相似文献   

6.
锂离子电池作为便携式电子产品、新能源汽车、蓄电设备等产品电源备受关注。锂离子电池由正极、负极、隔膜和电解液四部分组成。隔膜虽然不直接参与锂离子电池中的电化学反应,但是隔膜作为锂离子电池的重要组成部分,其性质在很大程度上影响锂离子电池的性能。目前聚烯烃仍是使用最为广泛和商业化最为成功的锂离子电池隔膜材料,但因其不良的电解液浸润性和热稳定性,降低了锂离子电池的电性能和安全性,因此改性成为改善聚烯烃隔膜材料性能和推广应用的重要途径。本文从聚烯烃材料多层膜结构改性、表面涂覆改性和层层自组装改性三方面总结了近五年聚烯烃隔膜改性研究的最新进展。最后,提出增强聚烯烃隔膜的热稳定性和电化学性能仍是未来研究重点,并对新型隔膜材料进行展望。  相似文献   

7.
通过静电纺丝和静电喷射技术,将三氧化二铝(Al_2O_3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间,制备出了具有"三明治"结构的P(VDF-HFP)/Al_2O_3/P(VDF-HFP)复合锂离子电池隔膜.分析了隔膜的形态结构、热收缩性能、拉伸性能、电化学性能以及隔膜在电池中的循环性能.测试结果表明,该复合隔膜比纯P(Vd F-HFP)膜拥有更高的吸液率,隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs).该复合隔膜的拉伸强度在4 MPa左右,相对应的断裂伸长率为261.57%.复合隔膜在室温下的离子电导率为1.61×10~(-3)S/cm,且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V).在电池的循环测试中,使用钴酸锂(LiCoCO_2)作为正极材料,由该复合隔膜组装的电池的首次放电比容量达到了理想的水平,为145 m A·h·g~(-1).  相似文献   

8.
研究了实验扣式电池中Celgard2400,Celgard2500,ENTEK ET20-60,TEKLON UH2054以及一种玻璃纤维隔膜对含有0.5mol·L-1Mg(CF3SO3)2的BMImBF4离子液体电解液中镁的电化学沉积-溶出性能的影响.通过扫描电镜对五种隔膜的表面形貌进行了分析,吸液实验比较了不同隔膜对Mg(CF3SO3)2/BMImBF4离子液体电解液的吸液性能,交流阻抗技术测定了隔膜的电导率,恒电流充放电测试研究了扣式电池中镁的沉积-溶出性能.在这五种隔膜中,虽然玻璃纤维隔膜的机械强度较差,但该材料对Mg(CF3SO3)2/BMImBF4离子液体电解液有较好的吸液性和液体保持性,特别是具有高的离子电导率,有利于大电流下镁的沉积-溶出.  相似文献   

9.
锂离子电池最常见的安全性问题主要出现在电解液和隔膜.热失控是导致锂离子电池产生安全事故的主要原因.改变电解液组分、增加电解液组分、引入阻燃添加剂等措施,能够有效缓解并抑制热效应,降低可燃性.改性聚烯烃隔膜是提高隔膜热稳定性的简单方法,使用高熔点的聚合物或无机材料对隔膜进行修饰,其本质类似于给隔膜穿上一层“外骨骼”,用来抵御热冲击和机械冲击.隔膜在保证具备基本功能的同时,还要更加环保,逐步转向可持续的生物质材料.本文针对近年来锂离子电池的安全保护措施进行了综述,主要包括近几年内部保护措施和外部保护措施的相关研究和探索方面的成果.详细介绍了最近报道的不易燃电解液、阻燃添加剂、隔膜、正极材料、限流设备和电池管理系统的作用机理和研究进展,并展望了未来锂离子电池安全性研究的发展方向.  相似文献   

10.
锂离子电池电解液从制造完成到使用,一般都会经历灌装、运输和贮存的过程,了解长期贮存过程对锂离子电池电解液性能的影响,对锂离子电池的生产具有一定的理论指导意义.本文运用电化学阻抗谱(EIS)测试并结合循环伏安法(CV)测试、充放电测试、扫描电子显微镜(SEM)等研究了1 mol.L-1 LiPF6-EC:EMC 基础电解...  相似文献   

11.
相转化法制备陶瓷涂层改性锂离子电池隔膜   总被引:3,自引:0,他引:3  
以聚乙烯(PE)隔膜为基底,涂覆聚偏氟乙烯(PVDF)和纳米氧化铝(nanoAl2O2),通过相转化的方法形成多孔陶瓷涂层,以改善聚乙烯隔膜对电解液的润湿能力、吸液能力及其热稳定性和电化学稳定性。结果表明:当涂层溶液中ω(PVDF)-0.15,72)(nano—Al2O2)-0.3时,改性隔膜的吸液率比纯PE隔膜提高了211.5%,水接触角降低了41.3°,热分解温度和电化学稳定窗口分别提高了73.4℃和0.2V。电池的容量保持率达到96.17%,而纯PE隔膜的只有85.78%。改性后隔膜的润湿能力、稳定性、安全性以及循环性能都有较大程度的提高。  相似文献   

12.
通过静电纺丝和静电喷射技术, 将三氧化二铝(Al2O3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间, 制备出了具有“三明治”结构的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合锂离子电池隔膜. 分析了隔膜的形态结构、 热收缩性能、 拉伸性能、 电化学性能以及隔膜在电池中的循环性能. 测试结果表明, 该复合隔膜比纯P(VdF-HFP)膜拥有更高的吸液率, 隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs). 该复合隔膜的拉伸强度在4 MPa左右, 相对应的断裂伸长率为261.57%. 复合隔膜在室温下的离子电导率为1.61×10-3 S/cm, 且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V). 在电池的循环测试中, 使用钴酸锂(LiCoCO2)作为正极材料, 由该复合隔膜组装的电池的首次放电比容量达到了理想的水平, 为145 mA·h·g-1.  相似文献   

13.
采用相转换法制备出了以天然橡胶(NR)/丁苯橡胶(SBR)为基的多孔状聚合物锂离子电池隔膜材料,系统研究了成膜的工艺参数及机理.利用扫描电镜(SEM)和原子力显微镜(AFM)观察了该聚合物隔膜的微观结构,同时考察了该聚合物膜的吸液保液能力、热稳定性及电化学性能.结果表明,该聚合物膜呈多孔蜂窝状,具有较高的吸液能力,在电解液中浸泡5h后的吸液率达320%,此时该聚合物多孔隔膜的室温电导率也达到了3.93×10-4S/cm;并且保液能力良好,在50℃的空气中保持5h的质量损失仅为31%.同时该聚合物多孔膜具有较宽的电化学稳定窗口和较高的热分解温度,在4.8V和157℃以下能安全使用.与金属锂电极间的界面阻抗在存放10天或经过20次循环伏安扫描内迅速增加,而后趋于稳定,表现出了良好的界面稳定性,有效地抑制了电极与隔膜间的钝化膜(SEI)的进一步生长.  相似文献   

14.
为减少多硫化锂(LIPs) “穿梭效应” 及锂枝晶对锂硫电池的影响,采用刮涂法制备中空碳材料修饰隔膜。接触角测试表明修饰隔膜对 LIPs具有更强的吸引力, 其对 LIPs “穿梭” 的有效抑制也可以通过渗透性实验进一步得到印证。在隔膜的正极对称电池测试中, 电流响应显示中空碳材料的催化使 LIPs快速转化为Li2S。通过隔膜的负极对称电池测试发现修饰隔膜呈现出更稳定的电压-时间曲线。为证明隔膜修饰对锂硫电池性能改进的效果, 分别采用聚丙烯(PP)隔膜、单面改性和双面改性的 PP隔膜组装成纽扣电池并进行电化学测试, 其中电极材料的硫负载量为 1.8~2.0 mg·cm-2。GITT(恒电流间歇滴定法)测试和锂离子扩散系数计算表明, 改性隔膜的离子传输更快且阻抗较小。通过分析第 1、5、10、50及 100次的充放电循环阻抗谱图发现, 中空碳材料的多通道能够为锂离子的传输提供更多的通道, 因此能够使锂离子具有更加稳定的扩散行为。在电流密度为 0.2 C时, 由双面改性隔膜组装的锂硫电池在首次充放电时有 1 035 mAh·g-1的可逆比容量, 700圈后仍有 500 mAh·g-1的高比容量,并在高硫负载时表现出 500 mAh·g-1的可逆比容量。双面修饰隔膜赋予了锂硫电池优异的电化学性能, 这是由于中空碳材料的修饰加速了 LIPs的转化和吸附, 有效缓解了 LIPs的穿梭效应, 且对锂枝晶有很好的抑制作用, 提高了锂硫电池的安全性。  相似文献   

15.
为减少多硫化锂(LIPs)“穿梭效应”及锂枝晶对锂硫电池的影响,采用刮涂法制备中空碳材料修饰隔膜。接触角测试表明修饰隔膜对LIPs具有更强的吸引力,其对LIPs“穿梭”的有效抑制也可以通过渗透性实验进一步得到印证。在隔膜的正极对称电池测试中,电流响应显示中空碳材料的催化使LIPs快速转化为Li2S。通过隔膜的负极对称电池测试发现修饰隔膜呈现出更稳定的电压-时间曲线。为证明隔膜修饰对锂硫电池性能改进的效果,分别采用聚丙烯(PP)隔膜、单面改性和双面改性的PP隔膜组装成纽扣电池并进行电化学测试,其中电极材料的硫负载量为1.8~2.0 mg·cm-2。GITT(恒电流间歇滴定法)测试和锂离子扩散系数计算表明,改性隔膜的离子传输更快且阻抗较小。通过分析第1、5、10、50及100次的充放电循环阻抗谱图发现,中空碳材料的多通道能够为锂离子的传输提供更多的通道,因此能够使锂离子具有更加稳定的扩散行为。在电流密度为0.2C时,由双面改性隔膜组装的锂硫电池在首次充放电时有1 035 mAh·g-1的可逆比容量,700圈后仍有500 mAh·g-1的高比容量,并在高硫负载时表现出500 mAh·g-1的可逆比容量。双面修饰隔膜赋予了锂硫电池优异的电化学性能,这是由于中空碳材料的修饰加速了LIPs的转化和吸附,有效缓解了LIPs的穿梭效应,且对锂枝晶有很好的抑制作用,提高了锂硫电池的安全性。  相似文献   

16.
安全性是制约锂离子电池向电动汽车领域应用拓展的主要障碍. 本工作提出了一种能够有效改善锂离子电池安全性的电解液添加剂-3,4-乙烯二氧噻吩单体(EDOT),研究了其在有机电解液中的电氧化聚合行为,以及对LiCoO2电极高温热行为和电池安全性、电化学性能的影响. 循环伏安(CV)和透射电镜(TEM)表征结果表明,单体添加剂能够在电池充电过程发生电氧化聚合,在正极表面形成一层聚(3,4-乙烯二氧噻吩)(PEDOT)导电聚合物膜;差示扫描量热(DSC)分析结果显示,PEDOT隔离了电解液与正极表面的直接接触,减少了过热条件下电解液在正极表面的分解放热. 安全性测试结果表明,在电解液中仅添加0.1%的EDOT单体,即可将电池在150 oC高温热冲击下发生热失控的时间推迟13.8分钟. 电化学性能测试结果表明,聚合产物良好的电子导电性能有效改善正极的电子传导能力,在一定程度上提高电池的倍率性能和循环稳定性,而容量、低温性能等基本不受影响,展示出良好的应用前景.  相似文献   

17.
用氧化铝(Al2O3)、硫酸钡(Ba SO4)、锆钛酸铅(PZT)、二氧化钛(Ti O2)、气相二氧化硅R202(RSi O2)、A380(ASi O2)和沉淀相二氧化硅(PSSi O2)7种无机纳米材料制备成分散液,在单向拉伸聚丙烯(PP)隔膜表面单面涂覆制备了复合隔膜.对复合隔膜的形貌、透气性及热稳定性进行了研究,并通过线性扫描曲线和不同倍率下电池充放电循环考察了复合隔膜对电解液的电化学稳定性和电池循环性能的影响.结果表明,7种复合隔膜与空白PP隔膜相比,在140℃下的热收缩率均减小1倍以上,表明其中无机纳米材料对PP隔膜的热收缩性能有很大改善.电池循环性能研究表明,这几种复合隔膜电池循环性能都有不同程度的提高,且在较高倍率下依旧可以发挥优势(ASi O2涂层复合隔膜除外).ASi O2涂层复合隔膜电池在2 C高倍率放电时容量快速衰减,其原因可能是ASi O2过大的比表面积增加了锂离子迁移的阻力.  相似文献   

18.
以丙酸乙酯(EP)作为碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)的共溶剂,研究其对LiFePO4锂离子电池低温电化学性能的影响.利用循环伏安曲线、交流阻抗图谱和恒电流充放电曲线等方法测试电池电化学性能.结果表明,添加一定量EP,可提高碳酸酯电解液的离子电导率,改善电解液与正极LiFePO4材料和负极石墨材料的相容性,从而提高LiFePO4锂离子电池的低温性能.使用1 mol·L-1LiPF6/(EC:EMC:DMC:EP=1:1:1:3,by mass)电解液的石墨/LiFePO4锂离子电池在10oC(1C)、-10oC(0.2C)、-20oC(0.2C)、-30oC(0.2C)和-40oC(0.2C)下的相对放电容量(以25oC时的放电容量为基准)分别为82.9%、75.6%、59.0%、46.4%和37.6%.  相似文献   

19.
制备了一种新型含氟磺酰亚胺锂盐(三氟甲基磺酰)(三氟乙氧基磺酰)亚胺锂{Li[(CF3SO2)·(CF3CH2OSO2)N], Li[TFO-TFSI]}及其与碳酸乙烯酯(EC)/碳酸甲乙酯(EMC)混合溶剂(3∶7, 体积比)组成的非水电解液. 采用核磁共振波谱(NMR)、 红外光谱(IR)、 质谱(MS)、 元素分析(EA)和离子色谱(IC)等手段对合成锂盐Li[TFO-TFSI]进行了结构表征及纯度分析. 通过差示量热扫描(DSC)和热重分析(TG)对Li[TFO-TFSI]及其电解液1.0 mol/L Li[TFO-TFSI]-EC/EMC(3∶ 7)的热学性质进行了表征. 采用交流阻抗(EIS)、 循环伏安(CV)、 计时安培法及扫描电子显微镜(SEM)等对Li[TFO-TFSI]/碳酸酯电解液的基础物化和电化学性质进行了表征. 结果表明, Li[TFO-TFSI]/碳酸酯电解液具有较好的电化学稳定性; 在4.2 V(vs. Li/Li+)以下Al箔不发生腐蚀; 室温下基于Li[TFO-TFSI]/碳酸酯电解液的Li/人造石墨和人造石墨/LiCoO2电池均保持较好的循环性能, 特别是人造石墨/LiCoO2锂离子电池循环100周后, 其比容量保持率明显高于相应的基于LiPF6/碳酸酯电解液体系的电池.  相似文献   

20.
夏兰  余林颇  胡笛  陈政 《化学学报》2017,75(12):1183-1195
电解液作为锂离子电池的重要组成部分,起着传输离子的作用,电解液的性质对电池的容量、循环性能及安全性能等影响巨大.近年来,随着高电压、高能量密度锂离子电池的开发应用,现有常规碳酸酯电解液存在正极稳定性差、闪点低、易燃烧等问题.因此,发展高电压耐燃电解液是应用高电压高容量正极材料、发展高电压高容量高安全性锂离子电池的迫切需要.主要综述了高电压电解液、耐燃性电解液及兼具抗氧化性和耐燃性的高浓度电解液的研究进展和现状.在此基础上,对锂离子电池新型电解液的发展方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号