首页 | 本学科首页   官方微博 | 高级检索  
     检索      

中空碳双面修饰的隔膜在高性能锂硫电池中的应用
引用本文:张渝,赵芳芳,潘聪,王鹏,魏良明.中空碳双面修饰的隔膜在高性能锂硫电池中的应用[J].无机化学学报,2013,29(18).
作者姓名:张渝  赵芳芳  潘聪  王鹏  魏良明
作者单位:嘉兴南湖学院新材料工程学院, 嘉兴 314001;上海交通大学电子信息与电气工程学院微纳电子系, 上海 200240;嘉兴大学数据科学学院, 嘉兴 314001;嘉兴大学生物与化学工程学院, 嘉兴 314001
基金项目:国家自然科学基金(No.51272155,21875061,21975066)和浙江省教育厅科研基金(No.Y202249253)资助。
摘    要:为减少多硫化锂(LIPs) “穿梭效应” 及锂枝晶对锂硫电池的影响,采用刮涂法制备中空碳材料修饰隔膜。接触角测试表明修饰隔膜对 LIPs具有更强的吸引力, 其对 LIPs “穿梭” 的有效抑制也可以通过渗透性实验进一步得到印证。在隔膜的正极对称电池测试中, 电流响应显示中空碳材料的催化使 LIPs快速转化为Li2S。通过隔膜的负极对称电池测试发现修饰隔膜呈现出更稳定的电压-时间曲线。为证明隔膜修饰对锂硫电池性能改进的效果, 分别采用聚丙烯(PP)隔膜、单面改性和双面改性的 PP隔膜组装成纽扣电池并进行电化学测试, 其中电极材料的硫负载量为 1.8~2.0 mg·cm-2。GITT(恒电流间歇滴定法)测试和锂离子扩散系数计算表明, 改性隔膜的离子传输更快且阻抗较小。通过分析第 1、5、10、50及 100次的充放电循环阻抗谱图发现, 中空碳材料的多通道能够为锂离子的传输提供更多的通道, 因此能够使锂离子具有更加稳定的扩散行为。在电流密度为 0.2 C时, 由双面改性隔膜组装的锂硫电池在首次充放电时有 1 035 mAh·g-1的可逆比容量, 700圈后仍有 500 mAh·g-1的高比容量,并在高硫负载时表现出 500 mAh·g-1的可逆比容量。双面修饰隔膜赋予了锂硫电池优异的电化学性能, 这是由于中空碳材料的修饰加速了 LIPs的转化和吸附, 有效缓解了 LIPs的穿梭效应, 且对锂枝晶有很好的抑制作用, 提高了锂硫电池的安全性。

关 键 词:锂硫电池  多孔碳  多硫化物  隔膜修饰
收稿时间:2023/10/30 0:00:00
修稿时间:2024/3/31 0:00:00

Application of double-side modified separator with hollow carbon material in high-performance Li-S battery
ZHANG Yu,ZHAO Fangfang,PAN Cong,WANG Peng,WEI Liangming.Application of double-side modified separator with hollow carbon material in high-performance Li-S battery[J].Chinese Journal of Inorganic Chemistry,2013,29(18).
Authors:ZHANG Yu  ZHAO Fangfang  PAN Cong  WANG Peng  WEI Liangming
Institution:College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China;School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;College of Data Science, Jiaxing University, Jiaxing, Zhejiang 314001, China;College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
Abstract:To reduce the"shuttle effects"of lithium polysulfides (LIPs) and the lithium dendrites in Li-S batteries, the separator modified by hollow carbon material was prepared by the simple scraping method. It can be found from the contact angle tests that the layers formed by the porous carbon of uniform width exhibited both stronger attrac-tions to LIPs and better permeability of electrolytes than the bare polypropylene (PP) separator. Permeation tests fur-ther showed an effective block over LIPs by the modification layers. Cathode symmetrical batteries with Celgard 3501 separator were assembled and the current response tests implied a conversion of LIPs to Li2S catalyzed by hol-low carbon materials. Lithium symmetrical batteries with modified separators were assembled and the voltage-time profile of charge-discharge processes showed better stability owing to the prevention of lithium dendrites. The Li-S batteries were assembled with sulfur loading of 1.8-2.0 mg·cm-2 and with the bare PP, single-side modified, and double-side modified separators. Calculations of the diffusion coefficient of lithium-ion from galvanostatic intermit-tent titration technique (GITT) tests and Nyquist plots both indicated the faster ion transportation for the modified separators. Smaller semicircles for impedance were also found in the plots. Nyquist plots after the 1st, 5th, 10th, 50th, and 100th cycles were analyzed to show a stable diffusion behavior of lithium ions, which should be caused by the multichannel from hollow carbon material to provide more paths for Li+ ion transportation. Li-S batteries with double-side modified separators presented a high specific capacity of 1 035 mAh·g-1 in the first cycle and 500 mAh·g-1 after 700 cycles at the current density of 0.2C, 630 mAh·g-1 after 100 cycles at 1C, and 505 mAh·g-1 after 100 cycles at 2C. The rate performance also behaved superior to the cells with bare PP as the separator. The cell assembled with higher sulfur content (3.2 mg·cm-2) also presented the reverse specific capacity of 500 mAh·g-1 at 0.2C. These battery performances could be ascribed to the porous hollow carbon materials for their adsorption and conversion of LIPs and their prevention of dendrites. Thus, the physicochemical interaction between hollow carbon and LIPs effectively alleviates the shuttle effect and the bifunctional modification of the separator could prevent the growth of lithium dendrites to improve the safety of the Li-S batteries.
Keywords:Li-S battery  porous carbon  polysulfide  separator modification
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号