首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
任彤  庄全超  郝玉婉  崔永丽 《化学学报》2016,74(10):833-838
六氟磷酸锂是目前商品化锂离子电池中使用最广泛的电解质锂盐,LiF和LiCl是除水和酸之外六氟磷酸锂产品中最重要的杂质.运用扫描电子显微镜(SEM)、充放电、循环伏安法(CV)以及电化学阻抗谱测试(EIS)等研究了LiF和LiCl对石墨电极电化学性能的影响.充放电结果表明,在1 mol/L LiPF6-EC:DEC:DMC电解液中添加饱和的LiF,可以显著提高石墨电极的充放电可逆容量并改善其循环性能,而在1 mol/L LiPF6-EC:DEC:DMC电解液中添加饱和的LiCl,虽也可提高石墨电极的首次充电容量,但严重恶化石墨电极的充放电循环稳定性.CV结果表明,电解液中LiF、LiCl的存在对EC的还原分解过程影响较小.但SEM和EIS的结果指示,LiF、LiCl对石墨电极表面SEI膜的形成过程影响较大.在添加饱和LiF的电解液中石墨电极表面形成的SEI膜较薄且电阻较小,进而提高了石墨电极的可逆循环容量及改善了其循环稳定性;但在饱和的LiCl电解液中石墨电极表面形成的SEI膜较厚且电阻较大,严重恶化石墨电极的电化学循环稳定性.  相似文献   

2.
运用电化学阻抗谱(EIS)和循环伏安法(CV)研究了在1mol/LLiPF6-EC(碳酸乙烯酯):DMC(碳酸二甲酯)电解液中添加Li2CO3对石墨电极性能的影响及机制.CV研究结果表明,在1mol/LLiPF6-EC:DMC电解液中添加Li2CO3能够有效抑制石墨电极首次充放电过程中碳酸乙烯酯(EC)的单电子还原过程,即还原分解产生乙烯和碳酸锂的过程,进而改善石墨电极的电化学循环性能.EIS研究结果表明,在添加Li2CO3的1mol/LLiPF6-EC:DMC电解液中,石墨电极表面的固体电解质相界面膜(SEI膜)具有较强的黏弹性,可以更好地适应锂离子嵌入过程中石墨颗粒体积的微小变化,从而使锂离子的嵌入过程更容易进行.  相似文献   

3.
温度对石墨电极性能的影响   总被引:1,自引:0,他引:1  
运用电化学阻抗谱(EIS)并结合循环伏安法(CV)研究了石墨电极25和60 ℃时在1 mol·L-1 LiPF6-EC(碳酸乙烯酯):DEC(碳酸二乙酯):DMC(碳酸二甲酯)电解液中, 以及60 ℃时在1 mol·L-1 LiPF6-EC:DEC:DMC+5%VC(碳酸亚乙烯酯)电解液中的首次阴极极化过程. 发现高温下(60 ℃)石墨电极在1 mol·L-1 LiPF6-EC:DEC:DMC电解液中可逆循环容量衰减的主要原因在于其表面无法形成稳定的固体电解质相界面(SEI)膜. 实验结果显示, VC添加剂能够增进高温下石墨电极表面SEI膜的稳定性, 进而改进石墨电极的循环性能.  相似文献   

4.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性,研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界而特征.实验结果表明,LiODFB不仅具有更高的热稳定性,而且在EC+DMC溶剂中具有较好的电化学性能.与使用LiPF6/EC+DMC的电解液相比,锂离子电池应用LiODFB基电解液在55℃的高温具有更好的容量保持能力;以0.5C、1C(1C=250 mA·g-1)倍率循环放电,两种电池间的倍率性能差别较小;LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜);交流阻抗表明,使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗.因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

5.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性, 研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界面特征. 实验结果表明, LiODFB不仅具有更高的热稳定性, 而且在EC+DMC溶剂中具有较好的电化学性能. 与使用LiPF6/EC+DMC的电解液相比, 锂离子电池应用LiODFB基电解液在55 ℃的高温具有更好的容量保持能力; 以0.5C、1C(1C=250 mA·g-1)倍率循环放电, 两种电池间的倍率性能差别较小; LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜); 交流阻抗表明, 使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗. 因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

6.
为提高锂离子电池的电化学性能,开发适合不同电解液的功能性添加剂是重要手段之一。功能性添加剂可以在不增加电池成本的情况下,显著改变电池的电化学性能,如改善循环性能,提高可逆容量和电解液电导率。本文分别从溶剂和添加剂两方面进行系统分析,介绍了锂离子电池电解液功能性添加剂的现状与进展,并提出面临的问题。本文以功能性添加剂的不同官能团为出发点,分析其作用机理,并分类探讨了阻燃添加剂、高电压添加剂等的优缺点、应用和前景。最后对锂离子电池电解液的溶剂及其添加剂的发展进行了展望。  相似文献   

7.
丁磺酸内酯对锂离子电池性能及负极界面的影响   总被引:5,自引:0,他引:5  
用循环伏安(CV)、电化学阻抗谱(EIS)、扫描电镜(SEM)、能谱分析(EDS)及理论计算等方法研究了添加剂丁磺酸内酯(BS)对锂离子电池负极界面性质的影响. 研究表明, 在初次循环过程中, BS具有较低的最低空轨道能量, 优先于溶剂在石墨电极上还原分解, 并形成固体电解质相界面膜(SEI膜). 在含BS的电解液中形成的SEI膜的热稳定性高, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小基本保持不变, 而在不含BS的电解液中形成的SEI膜的热稳定性较差, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小有明显的增加. 从BS对锂离子电池电化学性能影响的研究表明, 加入少量的BS能够显著提高锂离子电池的室温放电容量、低温及高温储存放电性能.  相似文献   

8.
以丙酸乙酯(EP)作为碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)的共溶剂,研究其对LiFePO4锂离子电池低温电化学性能的影响.利用循环伏安曲线、交流阻抗图谱和恒电流充放电曲线等方法测试电池电化学性能.结果表明,添加一定量EP,可提高碳酸酯电解液的离子电导率,改善电解液与正极LiFePO4材料和负极石墨材料的相容性,从而提高LiFePO4锂离子电池的低温性能.使用1 mol·L-1LiPF6/(EC:EMC:DMC:EP=1:1:1:3,by mass)电解液的石墨/LiFePO4锂离子电池在10oC(1C)、-10oC(0.2C)、-20oC(0.2C)、-30oC(0.2C)和-40oC(0.2C)下的相对放电容量(以25oC时的放电容量为基准)分别为82.9%、75.6%、59.0%、46.4%和37.6%.  相似文献   

9.
设计并合成了一系列基于苯环和环状碳酸酯的有机分子双(2,3-环碳酸甘油酯)对苯二甲酸酯、三(2,3-环碳酸甘油酯)均苯三甲酸酯和四(2,3-环碳酸甘油酯)均苯四甲酸酯,采用倍率测试、恒流充放电测试、交流阻抗测试和扫描电子显微镜测试等手段研究了这些添加剂对锂离子电池性能的影响.通过对循环20周前后球化石墨电极形貌的对比,发现含均苯四甲酸酯和均苯三甲酸酯的电解液球化石墨电极表面相对于空白电解液可形成一层致密而稳定的固体电解质中间相膜(SEI),从而优化电极-电解液的界面性能,且电池电阻增加较小;在测试电池的倍率性能时发现,均苯四甲酸酯的加入可以改善电池的倍率性能,而对苯二甲酸酯的加入则未能改善电池的循环性能.  相似文献   

10.
近年来关于锂离子电池造成的安全问题甚至事故的报道屡见不鲜,锂离子电池的安全问题已经成为人们关注的焦点. 我们用四丁基六氟磷酸铵(TBAPF6)作为锂离子电池电解液阻燃添加剂,研究发现添加了TBAPF6的电解液具有明显的阻燃效果,同时电解液电导率下降并不明显. LiCoO2/Graphite全电池在添加了TBAPF6的电解液中可逆容量会略有降低,但具有更优异的循环稳定性. 主要是由于TBAPF6添加量的增加会影响石墨电极的库伦效率,延长活化时间. 通过对LiCoO2/Graphite全电池绝热加速量热仪(ARC)测试,表明添加TBAPF6对电池的燃烧有明显的抑制作用. 在TBAPF6添加量至5%时,电池在300 oC内自放热速率不超过0.1oC/min,电池的安全性显著提高.  相似文献   

11.
锂离子电池日益广泛的应用对其性能提出越来越高的要求,而在电解液中加入适当的添加剂能够显著提升电极材料的电化学性能. 本文首次在1 mol·L-1 LiPF6/EC + DMC + EMC(体积比1:1:1)的电解液中添加一定量的二氟草酸硼酸钠(NaDFOB),并通过循环伏安(CV)、电化学阻抗图谱(EIS)和扫描电子显微镜(SEM)等分析考察了其对石墨负极材料性能的具体影响. 结果显示,添加NaDFOB的电解液显著提高了石墨材料在常温下的可逆充放电容量和循环性能,同时明显改善了石墨材料的高温循环性能. 其机理在于NaDFOB的阴阳离子同时参与了石墨表面固体电解质界面膜(SEI)的形成,形成高稳定性的电解液/电极界面.  相似文献   

12.
The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC elec- trolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1-xCoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5.  相似文献   

13.
Solid electrolyte interface (SEI) is a critical factor that influences battery performance. SEI layer is formed by the decomposition of organic and inorganic compounds after the first cycle. This study investigates SEI formation as a product of electrolyte decomposition by the presence of flouro-o-phenylenedimaleimaide (F-MI) additive. The presence of fluorine on the maleimide-based additive can increase storage capacity and reversible discharge capacity due to high electronegativity and high electron-withdrawing group. The electrolyte containing 0.1 wt% of F-MI-based additive can trigger the formation of SEI, which could suppress the decomposition of remaining electrolyte. The reduction potential was 2.35 to 2.21 V vs Li/Li+ as examined by cyclic voltammetry (CV). The mesocarbon microbeads (MCMB) cell with F-MI additive showed the lowest SEI resistance (Rsei) at 5898 Ω as evaluated by the electrochemical impedance spectroscopy (EIS). The morphology and element analysis on the negative electrode after the first charge-discharge cycle were examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). XPS result showed that MCMB cell with F-MI additive provides a higher intensity of organic compounds (RCH2OCO2Li) and thinner SEI than MCMB cell without an additive that provides a higher intensity of inorganic compound (Li2CO3 and Li2O), which leads to the performance decay. It is concluded that attaching the fluorine functional group on the maleimide-based additive forms the ideal SEI formation for lithium-ion battery.  相似文献   

14.
The formation process of solid electrolyte interphase(SEI) film on spinel LiMn2O4 electrode surface was studied by electrochemical impedance spectroscopy(EIS) during the initial storage in 1 mol/L LiPF6-EC:DMC:DEC electrolyte and in the subsequent first charge-discharge cycle. It has been demonstrated that the SEI film thickness increased with the increase of storage time and spontaneous reactions occurring between spinel LiMn2O4 electrode and electrolyte can be prevented by the SEI film. In the first charge-discharge cycle succeeding the storage, the electrolyte oxidation coupled with Li-ion insertion is evidenced as the main origin to increase the resistance of SEI film. The results also confirm that the variations of the charge transfer resistance(Rot) with the electrode potential(E) can be well described using a classical equation.  相似文献   

15.
Solid electrolyte interphase (SEI) film formation on graphite electrodes was studied on highly oriented pyrolytic graphite (HOPG) in nonaqueous electrolyte by in situ electrochemical atomic force microscopy (AFM). For potentials negative to 0.7 V versus Li|Li+ a SEI film is formed on the HOPG electrode surface. After the first cycle the film is rough and covers the surface of the HOPG electrode only partially. After the second cycle the HOPG surface is fully covered by a compact film. The thickness of the SEI film was measured by increasing the pressure of the AFM tip and thus scraping a part of the electrode surface. In this way a thickness of about 25 nm was found for the SEI film formed after two scan cycles between 3 and 0.01 V versus Li|Li+.  相似文献   

16.
The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC electrolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1−x CoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5. Supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2002CB211804)  相似文献   

17.
卞锋菊  张忠如  杨勇 《电化学》2013,19(4):355-360
本文通过磷酸铁锂/碳电池研究了电解液添加剂氟代乙烯碳酸酯(FEC)对电池低温性能的影响. 电池充放电实验证明,FEC添加剂能够在负极表面形成良好的固体电解质界面层(SEI). 电解液中添加5% FEC后,电池-40 oC低温放电容量保持率可以从31.7%提高至43.7%,还提高了电池放电电压平台. 交流阻抗测试表明,FEC的加入能够有效降低电池的界面传荷阻抗(Rct). 参比电极测试表明,其主要是降低了碳负极的低温极化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号