首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An on-line method capable of the separation of arsenic species was developed for the speciation of arsenite As(III), arsenate As(V), monomethylarsenic (MMA) and dimethylarsenic acid (DMA) in biological samples. The method is based on the combination of high-performance liquid chromatograph (HPLC) for separation, UV photo oxidation for sample digestion and hydride generation atomic fluorescence spectrometry (HGAFS) for sensitive detection. The best separation results were obtained with an anion-exchange AS11 column protected by an AG11 guard column, and gradient elution with NaH2PO4 and water as mobile phase. The on-line UV photo oxidation with 1.5% K2S2O8 in 0.2 mol L(-1) NaOH in an 8 m PTFE coil for 40 s ensures the digestion of organoarsenic compounds. Detection limits for the four species were in the range of 0.11-0.15 ng (20 microL injected). Procedures were validated by analysis of the certified reference materials GBW09103 freeze-dried human urine and the results were in good agreement with the certified values of total arsenic concentration. The method has been successfully applied to speciation studies of blood arsenic species with no need of sample pretreatment. Speciation of arsenic in blood samples collected from two patients after the ingestion of realgar-containing drug reveals slight increase of arsenite and DMA, resulting from the digestion of realgar.  相似文献   

2.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
An on-line method capable of the separation of arsenic species was developed for the speciation of arsenite As(III), arsenate As(V), monomethylarsenic (MMA) and dimethylarsenic acid (DMA) in biological samples. The method is based on the combination of high-performance liquid chromatograph (HPLC) for separation, UV photo oxidation for sample digestion and hydride generation atomic fluorescence spectrometry (HGAFS) for sensitive detection. The best separation results were obtained with an anion-exchange AS11 column protected by an AG11 guard column, and gradient elution with NaH2PO4 and water as mobile phase. The on-line UV photo oxidation with 1.5% K2S2O8 in 0.2 mol L–1 NaOH in an 8 m PTFE coil for 40 s ensures the digestion of organoarsenic compounds. Detection limits for the four species were in the range of 0.11–0.15 ng (20 μL injected). Procedures were validated by analysis of the certified reference materials GBW09103 freeze-dried human urine and the results were in good agreement with the certified values of total arsenic concentration. The method has been successfully applied to speciation studies of blood arsenic species with no need of sample pretreatment. Speciation of arsenic in blood samples collected from two patients after the ingestion of realgar-containing drug reveals slight increase of arsenite and DMA, resulting from the digestion of realgar.  相似文献   

4.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

5.
Arsenale, arsenite and monomethylarsonic acid (MMAA) have been characterized in soil-pore waters extracted from soils in mineralized and unmineralized areas. Special attention has been paid to collection and storage of the samples. The dominant arsenic species in aerobic soils was arsenate, with small quantities of arsenite and MMAA in mineralized areas. In anaerobic soils arsenite was found to be the major soluble species. The analysis was done with an HPLC anion-exchange column combined with continuous-flow hydride-generation and atomic-absorption spectrometry. A preconcentration column was incorporated to increase the sensitivity.  相似文献   

6.
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.  相似文献   

7.
A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained.  相似文献   

8.
P Zhang  G Xu  J Xiong  Y Zheng  O Yang  F Wei 《Electrophoresis》2001,22(16):3567-3572
Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mM phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mM phosphate - 10 mM borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.  相似文献   

9.
王振华  何滨  史建波  阴永光  江桂斌 《色谱》2009,27(5):711-716
建立了一种利用高效液相色谱-双通道原子荧光检测联用同时进行砷和硒形态分析的方法。以10 mmol/L NH4H2PO4溶液(pH 5.6)(添加2.5%(体积分数)的甲醇)为流动相,在12 min内同时分离了三价砷(As(III))、一甲基砷(MMA)、二甲基砷(DMA)、五价砷(As(V))、硒代胱氨酸(SeCys)、硒代蛋氨酸(SeMet)和四价硒[Se(IV)]等化合物。As(III)、DMA、MMA、As(V)、SeCys、SeMet和Se(IV)的检出限分别为1,3,2,3,4,18和3 μg/L (进样量为200 μL),5次测定的相对标准偏差为1.9%~6.1%(As 100 μg/L, Se 300 μg/L)。应用该方法对人体尿样及硒酵母片中砷和硒的形态进行了分析,目标物在尿样中的加标回收率为83%~108%,在硒酵母片中的加标回收率为88%~105%。实验结果表明,该方法可用于尿样及药品中砷和硒形态的日常分析。该方法减少了样品的分析时间和试剂用量,降低了工作强度,提高了工作效率。  相似文献   

10.
Summary Speciation and quantitative analysis of arsenical compounds are performed by using high-performance liquid chromatography (HPLC) with direct UV detection. Ion chromatography has been used to separate mixtures of arsenical compounds (arsenite, MMA, DMA, arsenate) on an anion-exchange column using phosphate buffer (1 mmol/l, pH=5.3) as eluent. Ion -pair reversed-phase chromatography has been investigated to resolve mixtures of arsenite, arsenate, MMA, DMA, arsenobetaine and arsenocholine on an octadecyl-bonded silica column using water as mobile phase (pH=7.3) and tetrabutylammonium cation as ion-pairing reagent. The influence of several parameters (pH, the ion-pairing reagent concentration or the amount of methanol in the mobile phase) has been studied to determine the best chromatographic conditions.  相似文献   

11.
Hydride generation-flame atomic-absorption spectrometry (HG-FAAS) was used as a continuous detection system for arsenic in the eluate from high-performance liquid chromatography (HPLC). Four arsenic species (arsenite, arsenate, monomethylarsonate and dimethylarsinate) were detected separately with the HPLC-HG-FAAS system equipped with an anion-exchange column. When hijiki (Hizikia fusiforme) extract was examined, arsenate was found predominantly and arsenite and dimethylarsinate were also detected. Liver supernatant fraction obtained from mice administered orally with arsenite was also studied with the HPLC-HG-FAAS system equipped with a gel permeation column. In addition to free or low-molecular-weight ligand-bound arsenic, high-molecular-weight protein-bound arsenic fractions were also detected.  相似文献   

12.
The development of an analytical methodology for the specific determination of arsenite, arsenate and the organic species monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), is described. The method is based on an ion chromatographic separation, coupled on-line to post-column generation of the gaseous hydrides by reaction with sodium tetrahydroborate in acidic medium. Detection and measurement were performed by inductively coupled plasma spectrometry operated in the atomic emission mode. Arsenic emission was monitored at 193.7 nm. Different types and sizes of anion-exchange columns, silica and polymeric, were tested using EDTA as eluent. Composition, acidity and flow-rate of the mobile phase were optimized in order to obtain the required resolution. Complete elution and resolution of the four species was achieved in about 6 min. Linear calibration curves were obtained in the 0.05-2 microg ml(-1) range for As(III), As(V) and MMA, and between 0.1 and 2.0 microg ml(-1) for DMA. The absolute limits of detection for 200-microl sample injections were in the ng range, with DMA the compound measured with less sensitivity. Results of the analyses of natural samples, such as river and ground waters spiked with the studied species, suggested that analyte recoveries might be dependent on the sample composition.  相似文献   

13.
The stability of arsenic species (arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]) in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 degrees C, +20 degrees C and +40 degrees C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 micro g L(-1) for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration.  相似文献   

14.
Speciation of arsenic in body fluids   总被引:1,自引:0,他引:1  
Suzuki KT  Mandal BK  Ogra Y 《Talanta》2002,58(1):111-119
Inorganic arsenic is metabolized by consecutive reduction and methylation reactions to dimethylated arsenic (DMA), and then excreted into the urine mostly in the form of DMA. Therefore, arsenic metabolites in the body fluids and organs/tissues are present in the form of inorganic (arsenite and arsenate) and methylated arsenics (MMA and DMA). Although pentavalent arsenics can be present mostly in the form of free ions, trivalent ones may be present more in the forms conjugated with thiol groups of glutathione (GSH) or proteins. Arsenic in the body fluids (plasma, bile and urine) is present in the soluble forms and can be speciated on ion exchange columns by HPLC with on-line detection by an inductively coupled argon plasma-mass spectrometer (ICP-MS). Free forms of arsenite, arsenate, and monomethylarsonous, monomethylarsonic, dimethylarsinous and dimethylarsinic acids in the body fluids have been demonstrated to be speciated simultaneously within 10 min or so on both anion and cation exchange columns together with arsenobetaine (AsB) and arsenocholine (AsC). Trivalent arsenics conjugated with GSH were eluted in intact forms on an anion exchange column but were liberated into free forms on a cation exchange column. Thus, free and GSH-conjugated arsenic metabolites in the bile and urine have been speciated simultaneously on ion exchange columns by HPLC-ICP-MS.  相似文献   

15.
Tseng WC  Yang MH  Chen TP  Huang YL 《The Analyst》2002,127(4):560-564
An on-line and fully automated method was developed for the continuous and dynamic in vivo monitoring of four arsenic species [arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)] in urine of living organisms. In this method a microdialysis sampling technique was employed to couple on-line with high performance liquid chromatography (HPLC) and hydride generation atomic absorption spectrometry (HGAAS). Dialysates perfused through implanted microdialysis probes were collected with a sample loop of an on-line injector for direct and automated injection into HPLC system hyphenated with HGAAS. The saline (0.9% NaCl) solution was perfused at the rate of 1 microl min(-1) through the microdialysis probe and the dialysate was loaded into 50 microl of sample loop. The separation conditions were optimally selected to be in phosphate buffer solution at a pH 5.2 with a flow rate of 1.2 ml min(-1). The effluent from the HPLC was first mixed on-line at the exit of the column with HCl (1 M) solution and then mixed with a NaBH4 (0.2% m/v) solution. Based on the optimal conditions obtained, linear ranges of 2.5-50 ng ml(-1) for AsIII and 6.75-100 ng ml(-1) for the other three arsenic species were obtained. Detection limits of 1.00, 2.18, 1.03 and 2.17 ng ml(-1) were obtained for AsIII, DMA, MMA and AsV, respectively. Typical precision values of 3.4% (AsIII), 5.4% (DMA), 3.6% (MMA) and 7.5% (AsV) were obtained, respectively, at a 25 ng ml(-1) level. Recoveries close to 100%, relative to an aqueous standard, were observed for each species. The average in vivo recoveries of AsIII, DMA, MMA and AsV in rat bladder urine were 56+/-5%, 60+/-9%, 49+/-3% and 55+/-7%, respectively. The use of an on-line microdialysis-HPLC-HGAAS system permitted the determination of four urinary arsenic species in the bladder of an anesthetized rat with a temporal resolution of 50 min sampling.  相似文献   

16.
Because stabilization of arsenite in water samples during transit and storage is troublesome, this work deals with a method to prevent this by on-site selective coprecipitation of arsenite with dibenzyldithiocarbamate and recovery of the coprecipitate by filtration through a 0.45-microm membrane filter. In the laboratory arsenic on the filter is quantitatively released by oxidation of arsenite to arsenate with H2O2 (6%) in alkaline medium (8 mmol L(-1) NaOH) at elevated temperature (85 degrees C) for 30 min followed by ultratrace determination by routine HGAFS and ICP-MS. It is shown that arsenate contamination of the coprecipitate is so low that arsenate concentrations three orders of magnitude higher than the arsenite concentration do not interfere; this is essential, because arsenate is usually the dominant arsenic species in water. Because significant preconcentration can be achieved in the solution obtained from the leached filter (normally a factor 20 but easily increased to 100) very low detection limits can be obtained (only limited by the purity of the materials and the cleanliness of working); a realistic limit of determination is 0.01 microg L(-1) arsenite. The procedure was used for the determination of arsenite in two ground waters from an ash depository site in the Salek valley (Slovenia). The matrix contained some elements at very high levels but this did not impair the efficiency of arsenite coprecipitation. The results obtained by use of HGAFS and ICP-MS were not significantly different at the 5% level for sub-microg L(-1) arsenite concentrations.  相似文献   

17.
Experiments have been carried out to study the behaviour of organoarsenicals treated with zeolites by means of speciation analysis. IC-ICP-MS was applied to identify and quantify arsenite, arsenate and the following organoarsenicals: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium bromide (TMA+), arsenobetaine (AsB) and arsenocholine (AsC). Zeolites loaded with ferrous ions did not significantly increase the retention of inorganic arsenic species compared to the native zeolites, while there was a ten-fold removal of arsenate relating to arsenite. The formation of As(V) and DMA in the leachates containing clinoptilolites and mordenites was confirmed in the presence of natural and synthetic zeolites. Arsenobetaine and arsenocholine yielded higher levels of arsenate than the methylated species.  相似文献   

18.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

19.
Total urinary arsenic determinations are often used to assess occupational exposure to inorganic arsenic. Ingestion of sea food can increase the normal background levels of total arsenic in urine by up to an order of magnitude, but this arsenic has relatively little toxicity; it is tightly bound as arsenobetaine. The excretion of inorganic arsenic and its metabolites dimethylarsenic acid (DMA) and monomethylarsonic acid (MMA) is not influenced by the consumption of arsenic from sea food. Specific measurements of DMA, MMA and inorganic arsenic provide a more reliable indicator or exposure than total urinary arsenic levels. An automated atomic absorption method involving high-performance liquid chromatographic separation of the arsenic species and continuous hydride generation is described for the determination of arsenite, arsenate, DMA and MMA at μg As l?1 levels. The method is used to study normal urinary arsenic levels in laboratory staff and arsenic excretion by exposed workers.  相似文献   

20.
采用微波辅助提取-液相色谱-氢化物发生-原子荧光光谱法(LC-HG-AFS)联用技术分析了太湖沉积物中砷的形态[亚砷酸(As(III))、二甲基砷酸钠(DMA)、一甲基砷酸二钠(MMA)和砷酸As(V)]。测得沉积物中以无机砷为主,且以As(V)居多。选定以1mol/L的磷酸和0.1mol/L抗坏血酸为提取液,在微波辅助萃取(功率为60W,时间12min)下,萃取率达79.84%~91.57%,回收率在94.78%~107.6%之间。4种砷的形态在0~160μg/L之间时线性良好,检测限为0.6~2.3μg/L,相对标准偏差RSD为1.62%~2.20%。方法具有简便、快速、灵敏的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号