首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Kahakachchi C  Uden PC  Tyson JF 《The Analyst》2004,129(8):714-718
The abilities of various extractants to recover four arsenic species [As(iii), As(v), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA)] from soils spiked with 20 micro g g(-1) As were investigated. The extractants were water, buffer solutions (citrate and ammonium dihydrogen phosphate), acidic solutions (phosphoric acid and acetic acid), a basic solution (sodium hydroxide) and household chemicals (vinegar and Coca Cola). Gentle shaking at room temperature with each extractant for 24 h gave different recoveries for the different arsenic species. With 0.1 M NaOH solution 46% As(iii), 53% DMA, 100% MMA and 84% As(v) were recovered. A rapid extraction procedure using a sonicator probe has been developed to obtain higher extraction efficiencies. Extracts of arsenic-spiked soil, SRM 2711 Montana soil and SRM 2709 San Joaquin soil were analyzed by HPLC-ICP-MS. In the SRM water extracts, DMA and MMA were identified in addition to inorganic arsenic. The solution detection limits (3s) were 0.1, 0.12, 0.13 and 0.15 ng mL(-1) for As(iii), DMA, MMA and As(v), respectively for HPLC-ICP-MS.  相似文献   

2.
The stability of arsenic, selenium, antimony and tellurium species in water and urine (NIST SRM 2670n) as well as in extracts of fish and soil certified reference materials (DORM-2 and NIST SRM 2710) has been investigated. Stability studies were carried out with As(III), As(V), arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), Se(IV), Se(VI), selenomethionine, Sb(III), Sb(V) and Te(VI). Speciation analysis was performed by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Best storage of aqueous mixtures of the examined species was achieved at 3 degrees C whereas at -20 degrees C species transformation especially of selenomethionine and Sb(V) took place and a new selenium species appeared within a period of 30 days. Losses and species transformations during extraction processes were investigated. Extraction of the spiked fish material with methanol/water led to partial conversion of Sb(III), Sb(V) and selenomethionine to two new antimony and one new selenium species. The other arsenic, selenium and tellurium species were almost quantitatively extracted. For soil spiked with MMA, PAA, Se(IV) and Sb(III), recoveries after extraction with water and sulfuric acid (0.01 mol/L) were below 20%.  相似文献   

3.
Kitagawa F  Shiomi K  Otsuka K 《Electrophoresis》2006,27(11):2233-2239
CE with indirect UV and mass-spectrometric detection was used for the simultaneous determination of arsenic acid (As(V)), arsenous acid (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA(+)), arsenobetaine (AB), and arsenocholine (AC). In the CE-indirect UV analysis, a baseline separation of arsenic species was successfully achieved by using a basic background solution (BGS) for anions and an acidic BGS for cations, respectively. The LOD values in CE-indirect UV for the individual analytes were 7.8, 12.5, 7.8, 12.5, 62.5, 125, 250, and 62.5 ppm, respectively. To achieve sensitive and selective analysis, CE coupled with ESI-MS was applied to the determination of arsenic compounds. The organic arsenic species were successfully separated with a higher sensitivity by CE-MS using the acidic BGS. The LODs in CE-MS for MMA, DMA, TMAO, TMA(+), AB, and AC were 1.0, 0.1, 0.01, 0.1, 0.01, and 0.01 ppm, respectively. In contrast, the analysis of inorganic arsenic species (As(V) and As(III)) resulted in a lower detectability in CE-MS compared to that obtained with the CE-indirect UV analysis. However, the speciation of eight arsenics by CE-MS was successfully achieved in a single run by switching the ESI polarity during MS detection.  相似文献   

4.
Arsenic extraction in natural and spiked soil samples was studied using two main types of extractants. The extractants were phosphoric acid used alone and with the addition of reducing agents (ascorbic acid and hydroxylammonium hydrochloride). The stability of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in the extracts over time and under different storing conditions was assessed by means of LC-HG-AFS. A protocol was devised to extract arsenic species from soils. The protocol assures the stability of the original sample species in the extract proposed by using an extraction solution of phosphoric acid with ascorbic acid and by purging the extracts after microwave extraction. The total As, Mn and Fe content in aqua regia and in phosphoric extracts was also measured by ICP-AES in order to perform the mass balance.  相似文献   

5.
Optimization of HPLC-ICP-AES for the determination of arsenic species   总被引:2,自引:0,他引:2  
High performance liquid chromatography coupled to ICP-AES detection provides a rapid, reliable and sensitive method for arsenic speciation. The separation of As(III), As(V), DMA and MMA was achieved with ion exchange chromatography coupled to an axially-viewed sequential ICP-AES. After optimization of the chromatographic parameters (pH and concentration of the mobile phase), a careful study of the interface was conducted. Five nebulizers associated to three spray chambers were tested. Response of the ICP to each arsenic species was strongly affected by the selection of the nebulizer and spray chamber, however similar responses were obtained for each arsenic species. Best signal-to-noise ratios were obtained by using a microconcentric nebulizer and a cyclone spray chamber and did not affect the chromatographic resolution. Detection limits better than 10 microg L(-1) were obtained for As(III), DMA, MMA and 20 microg L(-1) for As(V), which is a significant improvement over previously published results.  相似文献   

6.
A method based on ion chromatography (IC) and inductively coupled plasma MS (ICP-MS) was developed for the speciation of arsenic in water and soil extracts. An anion-exchange column (G3154A/101) was used to separate As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) with excellent resolution. Various ammonium salts, including NH4H2PO4, (NH4)2HPO4, (NH4)2CO3, and NH4HCO3, were examined as eluents to reduce matrix interference from chloride and to solve clogging problems. The best arsenic speciation was obtained within 9 min with excellent resolution and without interference from high chloride concentrations using an eluent containing 7.5 mM (NH4)2HPO4 at pH 7.9. The detection limits for the target arsenic species ranged from 0.1 to 0.4 microg/L with direct injection of sample without matrix elimination. The proposed method was effectively demonstrated by determining arsenic species in contaminated waters and soils of Bangladesh.  相似文献   

7.
Sun B  Macka M  Haddad PR 《Electrophoresis》2003,24(12-13):2045-2053
Stacking techniques used independently and also with a high-sensitivity cell (HSC) were employed to optimise sensitivity and detection limits in the direct photometric detection of the following eight arsenic species by capillary zone electrophoresis (CZE): arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), p-aminophenylarsonic acid (p-ASA), 4-nitrophenylarsonic acid (4-NPAA), and phenylarsonic acid (PAA) (target analytes). The stacking mechanisms, optimised stacking and separation conditions, and concentration sensitivity enhancement factors were discussed and compared for (i) normal stacking mode (NSM, sometimes also referred to as field-amplified stacking) in an uncoated fused-silica capillary in the counter-electroosmotic flow (EOF) mode, (ii) large-volume sample stacking (LVSS) with polarity switching, and (iii) the less often applied stacking method of co-EOF NSM stacking with EOF reversal using a poly(diallydimethylammonium chloride) (PDDAC)-coated capillary. The optimal injection volumes were 7.4, 60 and 17.2% of the total capillary volume, for the above three methods, respectively. LVSS with polarity switching gave the lowest limit of detection (LOD). The use of the HSC further reduced the LOD of each target analytes by a factor of 5-8 times. By combining LVSS and HSC, LODs of the target analytes could be reduced by a factor of 218-311, to 5.61, 9.15, 11.1, and 17.1 microg/L for As(III), DMA, MMA, and As(V), respectively. The method was demonstrated to be applicable to the determination of the target analytes in tap water and lake water, with recoveries in the range of 89.4-103.3%.  相似文献   

8.
Pacey GE  Ford JA 《Talanta》1981,28(12):935-938
As(III), As(V), monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA) were determined by graphite-furnace atomic-absorption spectrophotometry after separation of the species by ion-exchange chromatography. The detection limits (ng/ml) were DMA 0.02, MMA 2.0, As(V) 0.4 and total arsenic 4.0. As(III) was determined by difference. This system gave better detection limits and/or shorter analysis times than previously reported systems.  相似文献   

9.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

10.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

11.
A method to separate and quantify two inorganic arsenic species As(III) and As(V) and two organic arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), by HPLC-ICP/MS has been developed. The separation of arsenic species was achieved on the anionic exchange column IonPac AS11 (Dionex) with NaOH as mobile phase. The technique was successfully applied to analyze extracts of two contaminated soils, sampled at a former tannery site (soil 1) and a former paint production site (soil 2). The soils were extracted at pH values similar to the natural environment. Extractions were performed at different pH values with 0.3 M ammonium oxalate (pH = 3), milli-Q water (pH = 5.8), 0.3 M sodium carbonate (pH = 8) and 0.3 M sodium bicarbonate (pH = 11). No organically bound arsenic was found in the extracts. As(V) was the major component. Only up to 0.04% of the total arsenic contained in soil 1 were mobilized. The highest amount of extracted arsenic was found at the highest pH. In the milli-Q water extract of soil 1 As(III) and As(V) were found. High amounts of As(V) were found in the extracts of soil 2. Up to 20% of the total arsenic bound to soil 2 constituents were released. The results show that the mobilization of arsenic depended on the pH value of the extraction solution and the kind of extracted soil. Dramatic consequences have to be expected for pH changes in the environment especially in cases where soils contain high amounts of mobile arsenic.  相似文献   

12.
The stability of arsenic species (arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]) in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 degrees C, +20 degrees C and +40 degrees C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 micro g L(-1) for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration.  相似文献   

13.
Health risk associated with dietary arsenic intake may be different for infants and adults. Seafood is the main contributor to arsenic intake for adults while terrestrial-based food is the primary source for infants. Processed infant food products such as rice-based cereals, mixed rice/formula cereals, milk-based infant formula, applesauce and puree of peaches, pears, carrots, sweet potatoes, green beans, and squash were evaluated for total and speciated arsenic content. Arsenic concentrations found in rice-based cereals (63-320 ng/g dry weight) were similar to those reported for raw rice. Results for the analysis of powdered infant formula by inductively coupled plasma-mass spectrometry (ICP-MS) indicated a narrow and low arsenic concentration range (12 to 17 ng/g). Arsenic content in puree infant food products, including rice cereals, fruits, and vegetables, varies from <1 to 24 ng/g wet weight. Sample treatment with trifluoroacetic acid at 100 degrees C were an efficient and mild method for extraction of arsenic species present in different food matrixes as compared to alternative methods that included sonication and accelerated solvent extraction. Extraction recoveries from 94 to 128% were obtained when the summation of species was compared to total arsenic. The ion chromatography (IC)-ICP-MS method selected for arsenic speciation allowed for the quantitative determination of inorganic arsenic [As(III) + As(V)], dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Inorganic arsenic and DMA are the main species found in rice-based and mixed rice/formula cereals, although traces of MMA were also detected. Inorganic arsenic was present in freeze-dried sweet potatoes, carrots, green beans, and peaches. MMA and DMA were not detected in these samples. Arsenic species in squash, pears, and applesauce were not detected above the method detection limit [5 ng/g dry weight for As(III), MMA, and DMA and 10 ng/g dry weight for As(V)].  相似文献   

14.
Arsenic speciation using HPLC-HG-ICP-AES with gas-liquid separator   总被引:1,自引:0,他引:1  
Summary The determination of different chemical species of arsenic in aquatic media has been carried out using several separation and detection techniques. As separation techniques GC, HPLC, HG and cold trap-selective thermal desorption are the most frequently used. As detection techniques FAAS, ETAAS or, to a lesser extent, ICP-AES are applied. In this work the optimization conditions are presented for As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) determination using (IC)HPLC coupled to HG with gas-liquid separator, and using ICP-AES as detector is presented. The gas-liquid separator impedes the entrance of mobile phase into the nebulizer and consequently into the plasma torch. The experimental conditions for HG (kind of acids and concentration, borohydride concentration, reagent flows) as well as plasma conditions have been optimized.The quality parameters: LOD, precision and accuracy are reported for all the species studied.  相似文献   

15.
The influence of EDTA, carboxylic acids, amino-and hydroxocarboxylic acids, monosaccharides and humic substances on the generation of arsines in hydride generation atomic absorption spectrometry (HGAAS) was investigated. EDTA (0.02 mol L−1), ascorbic acid (0.02 mol L−1) and glucose or fructose (0.2 mol L−1) are useful additives for levelling sensitivities for As(III), monomethylarsonate (MMA) and dimethylarsinate (DMA). The presence of glycine, malonic, tartaric acids, BICIN and soil humin extracts leads to differences in analytical signal response between these arsenic species. An analytical application to the determination of the sum of As(III), monomethylarsonate (MMA) and dimethylarsinate (DMA) as well as the sum of toxicologically relevant hydride forming arsenic fraction As(III) + As(V) + MMA + DMA in EDTA soil/sediment extracts using continuous flow HGAAS was demonstrated. The limit of detection was 0.2 mg kg−1 As. Within-day and between-day precision were in the range 3–7% and 4–10%, respectively, for arsenic contents of 0.7–25 mg kg−1, with recoveries 95–103%.   相似文献   

16.
建立了稻米中砷酸根[As(Ⅴ)]、亚砷酸根[As(Ⅲ)]、砷甜菜碱(AsB)、一甲基砷(MMA)和二甲基砷(DMA)的液相色谱-电感耦合等离子体质谱(LC-ICP-MS)检测方法。以0.3 mol/L硝酸水溶液为提取试剂,样品在石墨消解仪中于95 ℃消解1.5 h,上清液供LC-ICP-MS分析。5种砷形态采用Dionex IonPac AS19阴离子交换柱(250 mm×4 mm)分离,经ICP-MS检测。比较了4种提取液对稻米中5种砷形态的提取效率,并对提取溶剂的浓度、提取温度和提取时间等条件进行了优化。通过加标回收试验结合测定标准物质考察了方法准确度及精密度,在2个加标水平上各形态的回收率为89.6%~99.5%,RSD(n=5)不大于3.6%,大米标准物质中各形态之和的测定结果与其标准值吻合,5种砷形态的线性范围AsB和DMA为0.05~200 μg/L,As(Ⅲ)和MMA为0.10~400 μg/L,As(V)为0.15~600 μg/L,方法检出限为0.15~0.45 μg/kg。结果表明,本方法简单、灵敏、耐用,可用于稻米中5种砷形态的准确定量和风险评估。  相似文献   

17.
A method to separate and quantify two inorganic arsenic species As(III) and As(V) and two organic arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), by HPLC-ICP/MS has been developed. The separation of arsenic species was achieved on the anionic exchange column IonPac®AS11 (Dionex) with NaOH as mobile phase. The technique was successfully applied to analyze extracts of two contaminated soils, sampled at a former tannery site (soil 1) and a former paint production site (soil 2). The soils were extracted at pH values similar to the natural environment. Extractions were performed at different pH values with 0.3 M ammonium oxalate (pH = 3), milli-Q water (pH = 5.8), 0.3 M sodium carbonate (pH = 8) and 0.3 M sodium bicarbonate (pH = 11). No organically bound arsenic was found in the extracts. As(V) was the major component. Only up to 0.04% of the total arsenic contained in soil 1 were mobilized. The highest amount of extracted arsenic was found at the highest pH. In the milli-Q water extract of soil 1 As(III) and As(V) were found. High amounts of As(V) were found in the extracts of soil 2. Up to 20% of the total arsenic bound to soil 2 constituents were released. The results show that the mobilization of arsenic depended on the pH value of the extraction solution and the kind of extracted soil. Dramatic consequences have to be expected for pH changes in the environment especially in cases where soils contain high amounts of mobile arsenic.  相似文献   

18.
Shraim A  Chiswell B  Olszowy H 《The Analyst》2000,125(5):949-953
Simple and inexpensive methods for the speciation of arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in environmental water samples were developed. In these methods a hydride generation-atomic absorption spectrometry (HG-AAS) technique was employed and perchloric acid (as a reaction medium), L-cysteine (as a pre-reducing agent for a certain contact time between its addition and analysis) and sodium tetrahydroborate(III) (NaBH4, as a reducing agent) were used. The use of L-cysteine greatly enhances the absorption signals of all four arsenic species at low acid concentration (0.001-0.04 M). The methods developed for the determination of total arsenic and total inorganic arsenic and speciation of the four arsenic species in environmental water samples are as follows. (i) DMA: 0.005 M acid and 0.04% NaBH4 in the absence of L-cysteine. DMA can also be speciated in the presence of L-cysteine as follows: 2 M acid, 2.5% L-cysteine after a contact time of approximately 5 min and 0.6% NaBH4. (ii) As(III): 5 M acid and 0.08% NaBH4 in the absence of L-cysteine. (iii) Total inorganic arsenic (As(III) + As(V)]: 8 M acid and 0.6% NaBH4 in the absence of L-cysteine. (iv) Total arsenic: 0.01 M acid, 5% L-cysteine after a contact time of 5 min and 2% NaBH4. (v) MMA: 8 M acid, 3% L-cysteine after a contact time of 50 min and 0.6% NaBH4. (vi) As(V): by difference. Detection limits and recoveries of added spikes for all analyses were found to be 0.5-1.7 ppb and 90-112% respectively.  相似文献   

19.
Shraim A  Chiswell B  Olszowy H 《Talanta》1999,50(5):1109-1127
The effects on the absorbance signals obtained using HG-AAS of variations in concentrations of the reaction medium (hydrochloric acid), the reducing agent [sodium tetrahydroborate(III); NaBH(4)], the pre-reducing agent (l-cysteine), and the contact time (between l-cysteine and arsenic-containing solutions) for the arsines generated from solutions of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsenic acid (DMA), have been investigated to find a method for analysis of the four arsenic species in environmental samples. Signals were found to be greatly enhanced in low acid concentration in both the absence (0.03-0.60 M HCl) and the presence of l-cysteine (0.001-0.03 M HCl), however with l-cysteine present, higher signals were obtained. Total arsenic content and speciation of DMA, As(III), MMA, and As(V) in mixtures containing the four arsenic species, as well as some environmental samples have been obtained using the following conditions: (i) total arsenic: 0.01 M acid, 2% NaBH(4), 5% l-cysteine, and contact time<10 min; (ii) DMA: 1.0 M acid, 0.3-0.6% NaBH(4), 4.0% l-cysteine, and contact time <5 min; (iii) As(III): 4-6 M acid and 0.05% NaBH(4) in the absence of l-cysteine; (iv) MMA: 4.0 M acid, 0.03% NaBH(4), 0.4% l-cysteine, and contact time of 30 min; (v) As(V): by difference. Detection limits (ppb) for analysis of total arsenic, DMA, As(III), and MMA were found to be 1.1 (n=7), 0.5 (n=5), 0.6 (n=7), and 1.8 (n=4), respectively. Good percentage recoveries (102-114%) of added spikes were obtained for all analyses.  相似文献   

20.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号