首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文利用多原子分子振动力场的模型势函法对H3+O和H3+O(H2O)n(n=1~3)阳离子的振动力场作了理论计算,并对其光谱频率进行了预测.H3+O和H9+O4的振动频率的结果优于从头算梯度法的结果.本文首次给出了H5+O2、H7+O3伸缩振动频率的理论预测值.  相似文献   

2.
在碱性介质中,用分光光度法研究了二羟基二(过碘酸根)合银(Ⅲ)(DPA)氧化谷氨酸(GA)的反应动力学及其机理.结果表明,反应对DPA为准一级,对GA为一级反应;在保持准一级条件([GA]0[DPA]0)下,表观速率常数随着[OH-]的增加先减小后增加,随着[IO4-]的增加而减小,且有正盐效应.据此提出了此反应的反应机理,由此反应机理推导出来的速率方程可很好地解释全部实验现象,进一步求得速控步骤速率常数k和298.2K时的平衡常数K及活化参数.  相似文献   

3.
二过碘酸含铜(Ⅲ)配离子氧化异丙胺的动力学及机理   总被引:1,自引:0,他引:1  
在碱性价质中于30~45℃区间,用分光光度法研究了二过碘酸含铜(Ⅱ)配离子(DPC)氧化异丙胺(PA)的动力学.结果表明:反应对DPC为一级,对PA的表观反应级数为1.15~1.39级;准一级([PA]0≥[Cu(Ⅲ)]0)速率常数kobs随[OH]和[IO4-]cx的增加而减小;在氮气保护下反应体系能引发丙烯酰胺聚合,表明有自由基参与反应.此外,还观察到对速率有负盐效应.据此,提出了包括DPC离解出一个H2IO63-的前期平衡和[Cu(HIO6)]与PA之间生成加成物的反应机理.  相似文献   

4.
测定了(p-CH3OC6H4)2TeO存在下M2(CO)10(M=Mn,Re)的CO取代反应速率及活化参数。其表观速率常数分别与M2(CO)10和(p-CH3OC6H4)2TeO的浓度的一次方成正比。本文所建议的缔合机理与前人用(CH3)3NO作氧原子转移试剂的相应反应所提出的机理相似。讨论了在(CH3)3NO和(p-CH3OC6H4)2TeO存在下影响M2(CO)10的CO取代反应速率的因素。  相似文献   

5.
将有机物2,5-二溴对苯二甲酸(H2L1)作为主配体,2,2′-联吡啶(L2)、1,10-菲咯啉(L3)分别作为辅配体,通过溶剂热法与一水硫酸锰、六水合硝酸钴分别反应得到配合物[Mn2(L1)2(L2)2(H2O)2]n (1)和[Co2(L1)2(L3)2(H2O)2]n(2)。通过单晶X射线衍射法、荧光光谱、热重分析等测试手段对这2种配合物进行分析研究。结果表明配合物1是由Mn2+配位连接L12-与L2形成无限延伸的二维网络状结构,各层在分子间氢键和π-π堆积作用...  相似文献   

6.
通过紫外-可见光谱和荧光光谱滴定、稳态荧光猝灭和溴化乙啶竞争键合实验研究了Ru(Ⅱ)配合物[Ru(bpy)(H2iip)2](ClO4)2{bpy=2,2′-联吡啶, H2iip=2-(吲哚-3-基)-咪唑[4,5-f][1,10]-邻菲罗啉}的酵母RNA键合性质. 结果表明, 二者键合模式为嵌入键合, 其键合常数为7.09×106 L/mol, 比小牛胸腺DNA的键合常数大, 且比同类配合物[Ru(bpy)2(H2iip)](ClO4)2的酵母RNA键合常数大.  相似文献   

7.
本文应用pH法测定了UO2+2与甘氨酰替甘氨酸、白氨酸和d,l-2,3,5,6-四氢-6-苯基咪唑[2,1-6]噻唑的络合物的逐级稳定常数,分别得出,UO2+2-甘氨酰替甘氨酸体系:β1=5.7×103和β2=1.4×1010;UO2+2-白氨酸体系:β1=4.0×105和β2=1.6×1013,以及UO2+2-d,l-2,3,5,6-四氢-6-苯基咪唑(2,1-6)噻唑体系:β1=6.5×104和β2=2.0×1010(25℃,μ=0.1,KCl维持)。同时,将徐光宪的溶液中络合物吸附平衡理论引入pH法研究络合物稳定常数中。  相似文献   

8.
以双齿配位的草酸根为配体和FeCl3反应得到了化合物{(Me2NH2)2[Fe2(ox)2Cl4]•H2O} n (ox=oxalate) ( 1•H2O). 在真空和加热的条件下, 1•H2O脱水发生单晶到单晶的转变, 得到了化合物{(Me2NH2)2[Fe2(ox)2Cl4]} n ( 1). 磁性研究表明客体水分子存在与否对化合物磁相互作用没有明显影响. 介电性质研究表明客体水分子的存在可影响化合物中客体胺和氢原子的动态弛豫过程. 化合物 1•H2O在250 K, 80 K和50 K呈现三个介电弛豫过程, 而化合物 1仅在80 K表现出单一弛豫过程.  相似文献   

9.
制得硝酸钪与两种冠醚的固态络合物,确定其组成为Sc(NO3)3·C16H20O7·H2O及Sc(NO3)3·C14H16O6·H2O。研究了冠醚本身及其钪的相应络合物的合成及有关性质。  相似文献   

10.
在298.15 K下,利用等温环境溶解反应热量计,测定了离子液体[Cnmim][H2PO4] (n= 3, 4, 5, 6) (1-烷基-3-甲基咪唑磷酸盐)在水中不同浓度的摩尔溶解热(ΔsolHm),根据Pitzer电解质溶液理论计算得到了标准摩尔溶解焓(ΔsolHm0)和Pitzer焓参数:βMX(0)L, βMX(1)L,和CϕL,并计算了表观相对摩尔焓。通过推导讨论,得到了离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)同系物每摩尔亚甲基对标准摩尔溶解焓的贡献。  相似文献   

11.
The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.  相似文献   

12.
Liao W  Yu G  Yue S  Li D 《Talanta》2002,56(4):613-618
Studies of the extraction kinetics of cerium(IV) from H(2)SO(4)-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 kJ mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 kJ mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.  相似文献   

13.
Both cis- and trans-isomers of 4-(2-(9-anthryl)vinyl)pyridine were isolated and their molecular structures established by X-ray crystallographic method. Variable temperature 1H NMR spectroscopy was used to study the trans to cis isomerization of the title compound. The kinetic study of the reaction was based on the ratio of the NMR integration heights in toluene-d8 of the double doublet due to the cis-isomer at δ 8.51 to that of the multiplet at δ 8. 15 which was kept constant during the whole experiment. The isomerization process was found to be first order and the Arrhenius activation parameters Ea , In A ,△ H≠ and △ S≠ were calculated as 27.84kJ/mol, 6.71, 25.23 kJ/mol and - 197.89 J/(K·mol) , respectively. Besides,conformational analyses of both compounds based on molecular modelling were carried out and the results were used to compare with the experimental data.  相似文献   

14.
The spin-lattice relaxation time and the nuclear Overhauser enhancement were measured using Bruker AM 300 spectrometer operating at 75.5 MHz for 13C to investigate the molecular motional characteristics and its tacticity effect for tactic poly(2-hydroxyethyl methacrylate) (PHEMA) as a function of temperature in dimethyl sulfoxide and methanol solvents. The observed relaxation data have been analyzed for both backbone motion and methyl internal rotation according to the log-χ2 distribution model and the diamond-lattice model. The correlation times thus obtained for the molecular motions show that isotactic PHEMA is more flexible than syndiotactic counterpart. The syndiotactic PHEMA seems to have intramolecular hydrogen bonding which restricts the motion of C-2 carbon at temperatures below 35°C, whereas the isotactic one indicated no hydrogen bonding at all temperatures examined in this study. The methyl group of isotactic PHEMA shows a greater degree of freedom for the internal rotation than that of syndiotactic one. From the temperature dependence of correlation times, the activation energies for both backbone segmental motion and methyl internal rotation are obtained. The activation energies, 20 kJ/mol for backbone motion and 19 kJ/mol for methyl internal rotation, for isotactic PHEMA are substantially lower than the corresponding activation energies of 30 and 32 kJ/mol obtained for syndiotactic one. An examination of these energies indicates that methyl side group and backbone motions in tactic PHEMA are linked together.  相似文献   

15.
Macrocyclic complexes of the type trans-[Cr(N4)(CN)2]+, where N4 = cyclam, 1,11-C3-cyclam, and 1,4-C2-cyclam demonstrate significant variation in their room-temperature excited-state behavior; namely, the lifetimes of the 2Eg (Oh) excited states are 335, 23, and 0.24 micros, respectively. The lifetimes of these complexes have been measured in acidified H2O/dimethyl sulfoxide over the temperature range between -30 and +95 degrees C. Arrhenius activation parameters were calculated from these data. There was very little variation in the values of the Arrhenius preexponential factor between these three complexes, whereas the value of Ea is 40.6 kJ/mol for the cyclam complex, 35.5 kJ/mol for the 1,11-C3-cyclam complex, and 22.3 kJ/mol for the 1,4-C2-cyclam complex. Thus, differences in the room-temperature excited-state lifetimes can be rationalized based on the competition between thermally independent nonradiative relaxation and a thermally activated channel. To test whether a photodissociation mechanism involving Cr-macrocyclic N bond cleavage is a plausible explanation for the thermally activated relaxation pathway, samples of the cyclam complex were photolyzed in acidified D(2)O. A marked increase in the lifetime after photolysis demonstrated the occurrence of photodeuteration and thus a likely photodissociation of a macrocyclic N.  相似文献   

16.
IntroductionRecently,a considerable interest has been fo-cused on the complexes of zinc with amino acidsdue to their excellent additives in medicine foodstuff and cosmetics[1— 6] .The investigation on thethermal behavior and the thermochemistry of somezinc amino acids is important to its further applica-tion,which has been reported in references[4,5 ,7— 1 0 ].However,the studies on solid complexZn( Thr) SO4· H2 O has not been reported,whichcan provide the necessary data and the foundation…  相似文献   

17.
三聚磷酸二氢铝吸附Cd~(2+)的动力学研究   总被引:1,自引:0,他引:1  
采用动态吸附法研究三聚磷酸二氢铝吸附镉离子的动力学行为并进行吸附活化状态热力学参数分析。结果表明,当三聚磷酸二氢铝粒径小于150μm、搅拌器转速大于200r/min、Cd2+的初始浓度为500mg/L时,三聚磷酸二氢铝对镉离子的化学吸附符合二级反应动力学方程,吸附速率常数k与温度T之间的关系符合Arrhenius方程式,吸附的活化能为Ea=27.93kJ/mol,吸附的频率因子A=65.33L/mg·min,ln(k/T)与1/T之间的关系符合Eyring公式,其活化焓ΔH=25.44kJ/mol,活化熵ΔS=-218.54J/mol·K。  相似文献   

18.
The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.  相似文献   

19.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

20.
The lability and structural dynamics of [Fe(II)(edta)(H(2)O)](2-) (edta = ethylenediaminetetraacetate) in aqueous solution strongly depend on solvent interactions. To study the solution structure and water-exchange mechanism, (1)H, (13)C, and (17)O NMR techniques were applied. The water-exchange reaction was studied through the paramagnetic effect of the complex on the relaxation rate of the (17)O nucleus of the bulk water. In addition to variable-temperature experiments, high-pressure NMR techniques were applied to elucidate the intimate nature of the water-exchange mechanism. The water molecule in the seventh coordination site of the edta complex is strongly labilized, as shown by the water-exchange rate constant of (2.7 +/- 0.1) x 106 s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(not equal), DeltaS(not equal), and DeltaV(not equal) were found to be 43.2 +/- 0.5 kJ mol(-1), +23 +/- 2 J K(-1) mol(-1), and +8.6 +/- 0.4 cm(3) mol(-1), respectively, in line with a dissociatively activated interchange (Id) mechanism. The scalar coupling constant (A/h) for the Fe(II)-O interaction was found to be 10.4 MHz, slightly larger than the value A/h = 9.4 MHz for this interaction in the hexa-aqua Fe(II) complex. The solution structure and dynamics of [Fe(II)(edta)(H(2)O)](2-) were clarified by (1)H and (13)C NMR experiments. The complex undergoes a Delta,Lambda-isomerization process with interconversion of in-plane (IP) and out-of-plane (OP) positions. Acetate scrambling was also found in an NMR study of the corresponding NO complex, [Fe(III)(edta)(NO(-))](2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号