首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
在常压、1000℃下,测定了两种不同煤化程度的无烟煤焦和一种脱灰无烟煤焦的水蒸气和CO2的气化反应性。并以N2和CO2为吸附质,测定了原煤焦的孔结构特征;以CO2为吸附质,测定了无烟煤焦在气化过程中微孔结构的变化。考察了矿物质对无烟煤焦孔结构变化的影响。结果表明,水蒸气和CO2对无烟煤焦的气化反应都有微孔的产生和扩展作用。无烟煤焦水蒸气气化反应性与煤焦的微孔比表面积成正比,但无烟煤焦CO2气化反应性与煤焦的微孔比表面积没有依存关系。煤中矿物质对无烟煤焦气化过程中孔结构的变化不产生影响。  相似文献   

2.
活性点数对煤焦气化反应的影响Ⅰ.气化活性的评价   总被引:2,自引:1,他引:2  
在活性点评价装置上,以二氧化碳与煤焦进行气化反应,测得了高温时煤焦的活性点数。实验发现其活性点数随煤种而变。煤化程度低的煤种具有较多的活性点数,随煤化程度的提高,活性点数相应减少。气化反应速率与活性点数成线性关系,不同煤种的气化速率的数十倍差别是由于煤焦具有的活性点数的差异所致。活性点数是表征煤焦气化活性的一种重要标准。  相似文献   

3.
活性点数对煤焦气化反应的影响:I.气化活性的评价   总被引:4,自引:2,他引:4  
在活性点评价装置上,以二氧化碳与煤焦进行气化反应,测得了高温时煤焦的活性点数,实验发现其活性点数随煤种而变。煤化程度低的煤种具有较多的活性点数,随煤化程度的提高。活性点数相应减少,气化反应速率与活性点数成线性关系,不同煤种的气化速率的数十倍差别是由于煤焦具有的活性点数的差异所致。活性点数是表征煤焦气化活性的一种重要标准。  相似文献   

4.
煤及煤焦微观结构特征与气化反应性   总被引:4,自引:2,他引:4  
研究了不同煤化度煤及煤焦的微观结构及其对气化反应性的影响。结果表明,褐煤焦具有丰富的分支孔系统和较大的比表面积,并含有较多对气化有催化作用的可交换阳离子。无烟煤焦分支孔贫乏,比表面积很小。煤焦的总孔容、比表面积和芳核大小之间有很好的对应关系。不同煤化度煤焦气化反应性差异很大,脱矿物质后煤焦反应性差异显著减小,但是脱矿物质前后煤焦的反应性随煤化程度的变化趋势相似。  相似文献   

5.
高温下制焦温度对煤焦气化活性的影响   总被引:23,自引:5,他引:23  
研究了高温下扎莱诺尔、后布连、东胜、西山和沈阳五种煤焦的碳转化率和气化速率与制焦温度的关系,并考察了气化温度对不同制焦温度下所制得扎莱诺尔煤焦气化活性的影响。实验表明:制焦温度对煤的气化活性的影响不尽相同,在较低的制焦温度1000℃下,五种煤焦表现出很大的气化速率和碳转化率的差距,但随制焦温度的提高煤焦的气化活性下降,制焦温度在1200℃时,四种煤焦的气化速率逐步接近,当制焦温度达到1400℃时,除沈阳煤外,四种煤焦的气化反应速率与碳转化率分别趋于相同。从五种煤以及不同制焦温度下所制得相应焦的SEM分析发现,当制焦温度超过相应煤灰分的软化温度时,制焦温度将直接影响焦中矿物质的分散程度及聚集状态。随着温度的提高,矿物质颗粒也开始从初始的随机分散分布发展到团聚,温度越高,聚集态的矿物质颗粒尺寸越大,其催化作用也越弱。在高温下灰份的熔融是制焦温度影响煤焦气化速率的最重要原因之一。  相似文献   

6.
煤的品位及其中矿物质对气化反应活性的影响   总被引:5,自引:3,他引:2  
采用加压热天平测定了十种煤焦及其除灰煤焦和水蒸汽反应的速率,认为煤焦活性大小与其原煤品位关系甚大;除灰煤焦活性与S_(co_2)之间有一定的相关性;年轻褐煤中矿物质具有很强的加快反应的催化作用,能降低反应的活化能;而在烟煤焦及无烟煤焦中矿物质的催化作用是很不明显的,它们的低活性是由于较大的孔扩散阻力所致。  相似文献   

7.
选取气流床气化炉所使用不同煤阶的八种煤焦,通过多级筛分制得单分散煤粉样本,利用热重分析仪考察了气化温度、煤焦粒径对不同煤阶煤焦CO_2气化反应的影响。对比了不同碳转化率阶段下的反应差异,并讨论了高碳转化率阶段的情况。研究表明,随着煤阶的升高,煤焦碳微晶结构更为有序,其气化活性也随之降低。煤焦粒径对气化反应的影响与煤阶有关。对于无烟煤,平均粒径300μm的无烟煤煤焦转化率达到95%所需时间可达40μm煤焦的7倍;对于褐煤与烟煤,由于其孔隙结构较为发达,粒径变化对煤焦气化活性的影响并不明显。综合煤阶、气化温度、煤焦粒径对气化反应活性的影响发现,相较低阶煤,提高气化温度、减小煤焦粒径能够更有效地提升高阶煤气化反应活性。  相似文献   

8.
水蒸气气氛煤中温催化气化动力学研究   总被引:1,自引:0,他引:1  
以碳酸钾为催化剂,用热天平的等温热重法研究了四种不同变质程度煤焦常压下水蒸气催化气化反应动力学。在加和不加碳酸钾条件下,测定了温度为700~850℃煤焦的化学反应控制条件下的碳转化率与时间的关系。碳酸钾催化剂的加入对变质程度越高煤的气化催化作用越大。加碳酸钾的碳转化率与时间的关系用混合模型和修正随机孔模型可以良好的拟合关联,均相模型关联较差。利用修正随机孔模型拟合关联出了四种煤焦催化水蒸气气化反应的活化能和指前因子,活化能为90.317~167.861kJ/mol,指前因子和活化能之间具有补偿效应。  相似文献   

9.
分别对神华煤和神华煤直接液化残渣的水蒸气和CO2气化反应性进行了研究。结果表明,水蒸气气化反应中,煤半焦的反应性强于残渣半焦;CO2气化反应中,残渣半焦的反应性强于煤半焦。这主要是影响煤和残渣水蒸气和CO2气化反应性的关键因素不同。水蒸气气化反应受煤化程度的影响较大,而CO2气化反应受煤化程度的影响较小,受矿物质催化作用的影响大。  相似文献   

10.
基于热重分析仪开展负载碳酸钠神府烟煤/遵义无烟煤煤焦气化实验,并借助扫描电子显微镜和孔结构及比表面积分析仪表征焦样孔结构及表观结构变化,考察了反应温度(650-800℃)、气化剂(水蒸气、二氧化碳)及碳酸钠负载量(钠离子负载量2.2%、4.4%、6.6%,质量分数)对神府烟煤/遵义无烟煤焦样气化反应活性的影响。结果表明,碳酸钠有利于促进神府/遵义煤热解过程孔隙结构的发展。在二氧化碳气氛下,适宜催化剂负载量使神府烟煤反应活性提高,过多负载催化剂堵塞煤焦内部孔隙结构,使得气化反应活性降低,遵义无烟煤反应活性随负载量增加而提高,两者反应活性均随温度升高而提高。在水蒸气气氛下,神府烟煤/遵义无烟煤在一定条件下反应活性随催化剂负载量增大、温度升高而提高。碳酸钠的添加能够在保证气化反应性的前提下降低气化反应温度和活化能。  相似文献   

11.
在滴管炉内对中国三种不同煤阶的典型煤种在800~1 400 ℃进行快速热解实验,利用XRD和氮气气体吸附法对所得煤焦进行微晶结构和孔隙特征分析,在热重分析仪上进行CO2气化反应活性的测定,研究不同热解温度煤焦结构特性与气化活性之间的关系。结果表明,随着热解温度的升高,内蒙古褐煤焦和神府烟煤焦的比表面积在1 200 ℃达到极大值,但气化活性却相对较低;遵义无烟煤焦在800~1 200 ℃气化活性逐渐提高,但比表面积在900 ℃达到极大值,表明煤焦比表面积与气化活性不存在严格关联。煤焦碳微晶结构变化所反映出煤焦石墨化进程与煤焦气化活性随热解温度的变化具有一致的变化趋势,表明快速热解煤焦的碳微晶结构变化对煤焦气化活性的影响更大。  相似文献   

12.
Comparative study on the gasification reactivity of the three types of Chinese coal chars with steam and CO2 at 850–1050 °C was conducted by isothermal thermogravimetric analysis. The effects of coal rank, pore structure, ash behavior, and gasification temperature on the gasification reactivity of coal chars were investigated. It is found that the gasification reactivity difference between different coal chars changes with reaction degree and gasification temperature, and has no immediate connection with coal rank and initial pore structure. Ash behavior plays an important role in the char reactivity, and changes with gasification temperature and reaction degree due to the variation in the compositions and relative amount. The influence of pore structure is more noticeable during a relatively moderate reaction process. The relative reactivity ratio of steam to CO2 gasification generally decreases with the increasing temperature, and is related with the catalytic effect of inherent minerals. The characteristic parameters of the chars were analyzed, finding that the value of half reaction specific rate is approximate to the average specific rate under the same conditions. The nth-order distributed activation energy model is proposed to describe the coal char gasification process, and the results show that the activation energy increases with the increasing carbon conversion.  相似文献   

13.
高碳转化率下热解神府煤焦CO2高温气化反应性   总被引:5,自引:0,他引:5  
用热天平等温热重法研究了6种不同热解速率和热解终温的神府煤焦在反应温度1200℃~1400℃的CO2气化反应性。研究了高碳转化率下,反应温度、热解终温和热解速率对快速和慢速热解焦高温反应性的影响。结果表明,快速热解焦比慢速热解焦的反应性好;随气化温度的提高,煤焦反应性的总体趋势增强,反应温度1300℃~1400℃时,3种快速热解焦的反应速率出现重叠;碳转化率为90%~98%时,慢速和快速热解焦的平均表观活化能为59.64kJ/mol~105.92kJ/mol和34.47kJ/mol~40.87kJ/mol,且气化反应以扩散控制步骤为主。  相似文献   

14.
利用热重分析仪研究了玉米芯及其酸水解残渣热解焦的气化反应性,重点考察了热解温度、升温速率、气化温度和气化介质(CO2、H2O)对残渣热解焦气化反应性的影响,并借助SEM观测了热解焦的表观形貌。结果表明,残渣热解焦的气化反应性较玉米芯热解焦有所下降;在热解温度550~850 ℃,残渣热解焦的气化反应性随热解温度提高而降低,在热解升温速率0.1 K/s下制取的热解焦,其气化反应性低于15.0 K/s下的热解焦;在气化温度850~950 ℃,提高气化反应温度和使用水蒸气作为气化介质能显著提高残渣热解焦的气化反应性;采用混合反应模型计算了残渣热解焦的气化反应动力学参数。  相似文献   

15.
在STA449F3型热天平上采用等温热重法研究了加入不同比例粗渣的煤焦在反应温度900~1380 ℃的气化反应性。利用热重-差示扫描量热法(TG-DSC)对煤焦的热行为进行分析,主要考察了加入不同比例粗渣、反应温度对煤焦反应性的影响。结果表明,煤焦-CO2反应过程中,气化反应性和碳转化率可根据煤灰熔融流动温度分为相对低温段和高温段。在低温段,加入粗渣增加了煤焦的气化反应性和碳转化率;在高温段,加入粗渣会减小煤焦的碳转化率,并当粗渣加入量超过一定比例时,会降低煤焦的气化反应性。气化初期反应速率可根据粗渣熔融流动温度分为低温区域的化学反应控制和高温区域的扩散控制。  相似文献   

16.
利用高频热解装置对神府烟煤水煤浆及其原煤进行了600~1 200 ℃条件下的快速热解实验,考察了两者快速热解后的煤焦产率、焦-C产率随热解温度的变化规律.利用XRD、氮气气体吸附法、SEM等测试手段对比分析了水煤浆及煤粉热解后煤焦的微晶结构、孔隙特征及表观结构;在热重分析仪上进行CO2气化反应活性的测定,对比了水煤浆和煤粉热解后煤焦的气化活性.实验表明,随着热解温度的升高,水煤浆和煤粉的热解焦产率、焦-C产率均逐渐降低,热解温度低于900 ℃时,两者热解焦产率、焦-C产率趋于一致,热解温度高于900 ℃时,水煤浆热解焦产率和焦-C产率明显低于煤粉热解焦;高温热解条件下,水煤浆热解焦的微晶有序化程度比煤粉热解焦略高,比表面积明显高于煤粉热解焦,水煤浆热解焦的气化活性优于煤粉热解焦.  相似文献   

17.
为了研究氧气对半焦的结构变化和反应性的影响,采用不锈钢模拟气流床反应器,在8种不同气氛,800和900 ℃条件下,进行了胜利褐煤水蒸气气化实验。利用拉曼光谱和热重分析仪分别表征了半焦的结构和本征反应性。结果表明,在800和900 ℃条件下,添加的氧气对半焦结构变化的影响方式不同;半焦结构的变化是影响碱金属和碱土金属(AAEM)挥发的主要因素。在不同温度下,添加的氧气对Na挥发的影响和对结构的作用类似,H2O/O2混合气氛促使气化所得半焦的反应性进一步降低。半焦的反应活性指数与拉曼光谱谱带比值 I (GR+VL+VR)/ID具有很好的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号