首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
化学   41篇
物理学   5篇
  2023年   2篇
  2022年   8篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
使用溶胶-凝胶法制备了LaCoO3催化剂,采用XRD、BET和XPS等方式对催化剂进行了表征,考察了该催化剂制备过程中煅烧温度、表面活性剂PEG-6000和PEG-20000含量对其H2S选择氧化制硫磺反应催化活性的影响。结果表明,表面活性剂PEG-6000及PEG-20000的添加能明显提高LaCoO3的催化活性。0.02 mol La(NO33+0.02mol Co(NO32溶液中添加0.30 g PEG-20000、煅烧温度为650℃时所制备的LaCoO3催化活性最好;在最佳反应温度260℃下,H2S的转化率达到96.10%,硫选择性为93.77%。  相似文献   
2.
固定床中纤维素热解及其焦油裂解机理研究   总被引:2,自引:0,他引:2  
研究了500~900℃条件下微晶纤维素在固定床中的热解过程;分别采用气质联用(GC-MS)和气相色谱分析了热解过程中生成的焦油和不可凝气体。结果表明,随热解温度升高,焦油产率减少、气体产率升高、焦产率略微下降,同时CO、CH4和H2的产率明显升高,而CO2的产率变化不明显。焦油主要由二次反应产生,不可凝气体则由一次热解产物和二次热解产物共同产生。使用Gaussian 09软件对热解过程进行了模拟,发现纤维素分子在热解过程中首先分解为纤维素单体,然后纤维素单体上的羟基官能团优先脱除,生成的中间产物重组生成焦油。随热解温度升高,焦油中醚、醇、酸等化合物分解成自由基,自由基间发生重组、结合,导致烯烃和炔烃增多以及不可凝气体含量的升高。  相似文献   
3.
基于加压固定床反应器研究了不同煤阶的煤催化加氢气化效果,对比了煤阶对催化剂添加量、甲烷释放速率以及产品气组成的影响。原煤及气化残渣采用FT-IR和SEM进行表征分析。研究结果表明,不添加催化剂情况下,随着煤阶的升高原煤气化反应性降低,低阶煤的甲烷释放分为两个阶段;加入催化剂之后,3种煤中以神府烟煤的反应性最好,遵义无烟煤和云南褐煤反应性较差。SEM和FT-IR表征结果表明,高阶煤颗粒表面更加光滑、煤结构致密,而煤中的脂肪族结构以及芳香结构振动峰强度随煤阶的降低而升高,催化剂的加入使得脂肪结构吸收峰明显加强。这些差异导致不同煤样催化加氢气化反应活性不同。  相似文献   
4.
碳烟主要是烃类燃料不完全燃烧生成的产物,其对人类健康、空气质量以及燃烧装置的使用寿命都会产生有害影响。碳烟生成是一个复杂的物理化学过程,控制碳烟排放,需要克服碳烟生成和燃烧过程中物理和化学演化的巨大差异,这些差异表现为对碳烟纳观结构和表面官能团随碳烟氧化活性反应变化的深入探索研究。近些年,研究人员对碳烟的生成机理开展了系列研究,对碳烟生成各个物理化学反应阶段有了一定认识。结合光谱诊断技术可深入了解燃烧系统碳烟形成过程,确定碳烟颗粒分子组成、精细结构、浓度分布等特征,也可从碳烟结构变化、黑体辐射强度等方面详细了解碳烟形成过程。该文旨在阐述光谱诊断技术对烃类火焰碳烟表征的研究进展和发展趋势,探讨LIBS, LII和LIF等作为诊断工具在包含背景辐射的火焰中检测碳烟生成过程产生辐射强度准确性等问题。主要介绍了烃类火焰碳烟的形成机理(从前驱体产生、生长到颗粒生成、凝聚,最后进行颗粒氧化)。总结了探测碳烟性质光谱诊断方法的应用以及光谱诊断技术对燃烧过程中碳烟表征的研究现状,包括对碳烟体积分数、温度和基于图像处理的碳烟结构表征,反应碳烟前驱体(多环芳烃)、反应气氛、温度等对碳烟颗粒物生成的影响。最...  相似文献   
5.
建立了耐硫甲烷化循环式反应器的拟均相一维模型,考察了床层直径,循环比,入口气体温度及压力和温度范围对反应器操作的影响,结果表明:循环比和温度操作范围是反应器操作的决定因素,对日产5万标准立方煤气的反应器进行了优化设计分析。  相似文献   
6.
射流携带床反应器液体停留时间分布及模拟   总被引:1,自引:0,他引:1  
对射流携带床液体停留时间分布进行了研究,考察了液体流量、气体流量和气体动量对液体停留时间分布的影响。结果表明,增加液体流量使停留时间分布密度曲线变得高而窄,且平均停留时间变短;气体流量增大使得停留时间出峰略有提前,气体流量大于4L/min时,继续增大气体流量对液体停留时间分布影响较小;当液体流量小于60L/h时,气体动量对液体停留时间的影响较明显,主要表现气体动量越大液体平均停留时间越长。基于实验结果分析及实验中观测的现象,将射流携带床内液体流动结构分为中心区和壁面区进行研究,建立了描述射流携带床内液体停留时间分布的数学模型,模型模拟结果和实验数据吻合良好。  相似文献   
7.
采用热天平研究了贵州褐煤、三江原煤及其拔头半焦的燃烧行为,考察了粒径和升温速率对样品着火点和燃烧稳定性的影响。减小样品的粒径可显著降低样品的着火点,改善样品的燃烧性能,在粒径100~120目和升温速率25℃/min下,样品的燃烧稳定性最好。根据Coats-Redfern方法求解燃烧反应动力学参数。燃烧反应动力学分析表明,三种样品的热天平燃烧反应均为一级反应,并得到了实验样品的燃烧反应动力学参数,表观活化能E和指前因子A。贵州褐煤的活化能为100.0~163.6 kJ/mol,三江原煤的活化能为73.4~161.2 kJ/mol,三江煤焦的活化能为68.3~178.1 kJ/mol。  相似文献   
8.
在加压固定床反应器中研究了碱金属K对褐煤加氢气化的催化作用,考察了温度、压力和催化剂添加量对褐煤加氢气化反应性能的影响。结果表明,碱金属K对褐煤加氢气化具有良好的催化效果,气化反应的碳转化率约为95%,产品气中甲烷的质量分数可达89%;升高温度、提高压力和增加催化剂添加量均能明显提高气化反应性能,催化剂的饱和添加量约为15%。利用扫描电子显微镜(SEM)和气体吸附/脱附分析,对不同催化剂添加量煤样的表面形态和孔结构进行分析,发现比表面积和孔容积随K添加量的增加先减少后增大。  相似文献   
9.
火焰的自发辐射光谱与火焰的结构、温度分布等燃烧特征参数密切相关。对激发态自由基辐射的辐射强度与二维分布进行研究,可清晰地反映火焰燃烧状态而不对火焰产生扰动。基于多喷嘴对置式气流床气化实验平台,利用光纤光谱仪和配置CCD相机的高温内窥镜,对柴油扩散火焰的辐射光谱及CH*辐射二维分布特性进行研究。考察了当量比和撞击作用对火焰辐射光谱和CH*辐射分布的影响。结果表明,柴油火焰在306.47及309.12 nm处存在OH*辐射特征峰,在431.42 nm处存在CH*辐射特征峰,且存在明显的碱金属原子Na*(589.45 nm),K*(766.91和770.06 nm)发射光谱。此外,由于柴油不完全燃烧生成大量碳黑,在辐射光谱的可见光波段产生了强烈的连续黑体辐射。火焰中的黑体辐射对CH*辐射特征峰的检测存在干扰,且当量比越低时背景辐射越强,对自由基特征峰检测干扰越大。基于普朗克定律利用插值法可扣除430 nm附近波段背景辐射。柴油火焰中CH*辐射峰值随当量比的增加单调减小,CH*辐射等值线沿火焰发展方向依次出现三峰状、双峰状及单峰状,最终收缩为以反应核心区为中心的圆核。随着当量比的提高,出现各个形状的CH*辐射强度阈值不断降低,火焰主反应区面积减小且向下游移动,当量比增加到1.0附近时,理论上柴油完全燃烧,CH*辐射强度显著降低,贫燃火焰的CH*辐射强度及分布区域几乎稳定不变。利用CH*辐射强度值判定火焰举升长度,对于单喷嘴射流火焰,火焰举升长度随当量比的增加经历了显著增加后小幅下降的过程。相同当量比时两喷嘴撞击火焰CH*辐射强度峰值始终高于单喷嘴射流火焰对应值;火焰举升长度随当量比的增加小幅增加。火焰撞击的约束作用使得火焰举升长度不易随着当量比变化发生较大波动,燃烧更加稳定。这为定量判断火焰燃烧状态提供了一种直观、有效的方法,同时为柴油燃烧的化学动力学研究提供了实验依据。  相似文献   
10.
OH*自由基是火焰中主要的激发态自由基之一,它所产生的化学发光可用于描述火焰的结构、拉伸率、氧燃当量比和热释放速率等特征信息,因此被广泛应用于火焰燃烧状态的在线诊断。以甲烷/氧气层流同轴射流扩散火焰作为研究对象,采用GRI-Mech 3.0机理结合OH*自由基生成和淬灭反应进行数值计算,对OH*自由基的二维分布特性进行研究,分析不同区域内OH*自由基的生成路径,并探讨不同氧燃当量比例和不同喷嘴出口尺寸对OH*自由基强度和分布特性的影响。模拟结果与实验研究基本吻合,表明计算模型能够准确描述火焰中OH*自由基的二维分布。结果表明:在甲烷/氧气层流同轴射流扩散火焰中,OH*自由基存在两种不同形态的分布区域,分别由反应CH+O2=OH*+CO和H+O+M=OH*+M生成;随着氧燃当量比提高,OH*自由基的分布区域逐渐向火焰下游扩张,根据其分布形态的变化可以对火焰燃烧状况进行判断;如果OH*自由基仅分布于火焰的上游区域且呈断开形态,则说明火焰处于贫氧燃烧状态。如果OH*分布呈环状形态,则说明火焰处于富氧燃烧状态;相同氧气流量条件下,缩小喷嘴出口的环隙尺寸有助于加强燃料和氧气的化学反应程度,从而使火焰中OH*自由基的摩尔分数显著提高,增强OH*化学发光的辐射强度,提高火焰光谱诊断的准确性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号