首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B_4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B_4C,B_xSiC, SiO_2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B_4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of B_xSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.  相似文献   

2.
Polycrystalline cubic boron nitride(Pc BN) compacts, using the mixture of submicron cubic boron nitride(c BN) powder and hexagonal BN(h BN) powder as starting materials, were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃ without additives. In this paper, the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.% to 24 vol.%, which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure. Transmission electron microscopy(TEM) analysis shows that after high pressure and high temperature(HPHT) treatments, the submicron c BN grains abounded with high-density nanotwins and stacking faults, and this contributed to the outstanding mechanical properties of Pc BN. The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃ possessed the outstanding properties, including a high Vickers hardness(~ 61.5 GPa), thermal stability(~ 1290℃ in air),and high density(~ 3.46 g/cm~3).  相似文献   

3.
Diamond crystal crystallized in Fe–Mg–C system with Archimedes buoyancy as a driving force is established under high pressure and high temperature conditions. The experimental results indicate that the addition of the Mg element results in the nitrogen concentration increasing from 87 ppm to 271 ppm in the diamond structure. The occurrence of the {100}plane reveals that the surface character is remarkably changed due to the addition of Mg. Micro-Raman spectra indicate that the half width of full maximum is in a range of 3.01 cm~(-1)–3.26 cm~(-1), implying an extremely good quality of diamond specimens in crystallization.  相似文献   

4.
The cycling performance, impedance variation, and cathode surface evolution of the Li/LiCoO2 cell using Li FSI–KFSI molten salt electrolyte are reported. It is found that this battery shows poor cycling performance, with capacity retention of only about 67% after 20 cycles. It is essential to understand the origin of the instability. It is noticed that the polarization voltage and the impedance of the cell both increase slowly upon cycling. The structure and the properties of the pristine and the cycled LiCoO2 cathodes are investigated by x-ray diffraction(XRD), scanning electron microscopy(SEM), Raman spectroscopy, x-ray photoelectron spectroscopy(XPS), and transmission electron microscopy(TEM). It is found that the LiCoO2 particles are corroded by this molten salt electrolyte, and the decomposition by-product covers the surface of the LiCoO2 cathode after 20 cycles. Therefore, the surface side reaction explains the instability of the molten salt electrolyte with LiCoO2.  相似文献   

5.
Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, they have been found to have many potential applications, such as gas sensors, resistors, photodetectors, photocatalysts, and solar cells. However, the existing preparation methods for SnS_2 QDs are complicated and require a high temperature and high pressure environments; hence they are unsuitable for large-scale industrial production. An effective method for the preparation of monodispersed SnS_2 QDs at normal temperature and pressure will be discussed in this paper. The method is facile, green,and low-cost. In this work, the structure, morphology, optical, electrical, and photoelectric properties of SnS_2 QDs are studied. The synthesized SnS_2 QDs are homogeneous in size and exhibit good photoelectric performance. A photoelectric detector based on the SnS_2 QDs is fabricated and its J–V and C–V characteristics are also studied. The detector responds under λ = 365 nm light irradiation and reverse bias voltage. Its detectivity approximately stabilizes at 1011 Jones at room temperature. These results show the possible use of SnS_2 QDs in photodetectors.  相似文献   

6.
Dense nanocrystalline BaTiO3 ceramics with a grain size of 5Onto are prepared under 6 GPa at 1273K using a high pressure sintering method. The sintered bulk is uniform and the relative density is above 97%. We anneal the ceramic samples in oxygen with various temperatures and for the annealing, several broadened peaks can be observed at different times without apparent grain growth. After about 378K( by dielectric measurements. However, these peaks are very different from those of coarser-grained ceramics. It is indicated that both the elimination of oxygen vacancies and the release of residual stresses caused by high pressure greatly improve the overall ferroelectric properties of BaTiO3 ceramics. The observation of nearly linear polarization hysteresis loop after anneal provides the solid evidence of ferroelectricity in these nano-sized BaTiO3 ceramics. It is believed that the absence of 90° domains and the existence of poor-permittivity nonferroelectric grain boundaries contribute to the slim loop.  相似文献   

7.
<正>We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydroreactive fuel under high temperature gaseous atmosphere.The fuel studied in this paper contains 73%magnesium powders.An experimental system is designed and experiments are carried out in both argon and water vapor atmospheres. It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium,which indicates the molten state of magnesium particles in the burning surface of the fuel.Based on physical considerations and experimental results,a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel.The model enables the evaluation of the burning surface temperature,the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration.The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase,which are in agreement with the observed experimental trends.  相似文献   

8.
Bi0.5 (Na0.72K0.28- x Lix )0.5 TiO3 (BNKLT- 100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 Of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130℃, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100℃ has the highest piezoelectric constant d33 of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.  相似文献   

9.
The properties of lithium ferrites are very sensitive to chemical composition, synthesis method, and sintering techniques. Li–Ni–Co ferrites with compositional formula Li_(0.45-0.5x)Ni_(0.1)Co_xFe_(2.45-0.5x)O_4, where 0.00 ≤ x ≤ 0.1 in steps of 0.02 were prepared by chemical sol–gel method and sintered by microwave sintering technique. The x-ray diffraction patterns confirmed the formation of single phase with spinel structure in all the samples. The structural parameter viz.lattice constant, crystallite size, and x-ray density for these samples were studied and compared with those measured from samples of similar composition prepared by the sol–gel method and sintered by conventional sintering technique. Enhancement in the magnetic properties like Curie temperature, hysteresis parameters was observed by employing sol–gel synthesis combined with microwave sintering. The results obtained and mechanisms involved are discussed in the paper.  相似文献   

10.
Large diamond single crystals doped with NiS are synthesized under high pressure and high temperature. It is found that the effects on the surface and shape of the synthesized diamond crystals are gradually enhanced by increasing the NiS additive amount. It is noted that the synthesis temperature is necessarily raised to 1280℃ to realize the diamond growth when the additive amount reaches 3.5% in the synthesis system. The results of Fourier transform infrared spectroscopy(FTIR) demonstrate that S is incorporated into the diamond lattice and exists in the form of C–S bond. Based on the FTIR results, it is found that N concentration in diamond is significantly increased, which are ascribed to the NiS additive. The analysis of x-ray photoelectron spectroscopy shows that S is present in states of C–S, S–O and C–S–O bonds. The relative concentration of S compared to C continuously increases in the synthesized diamonds as the amount of additive NiS increases. Additionally,the electrical properties can be used to characterize the obtained diamond crystals and the results show that diamonds doped with NiS crystals behave as n-type semiconductors.  相似文献   

11.
景奇  李晓娟 《物理学报》2019,68(5):57701-057701
在压电陶瓷中增加孔洞数量,可以有效改善陶瓷的静水压优值,提高其压电灵敏性.考虑到铅基压电陶瓷对环境和人体的危害,本文以糊精为造孔剂,采用传统固相烧结法制备无铅钛酸钡(BaTiO_3)多孔压电陶瓷.研究烧结温度(1250,1280,1300℃)和糊精含量(5%,10%,15%)对BaTiO_3陶瓷晶体结构、孔隙率以及孔形貌特征的影响,探索孔隙率与BaTiO_3陶瓷介电、压电、声阻抗以及静水压优值等性能之间的相关性.结果表明:所有多孔陶瓷表现出三维贯通的开气孔,尺寸约为1—7μm.烧结温度强烈影响BaTiO_3陶瓷的孔隙率,加入10%低沸点的糊精时,1250℃和1280℃烧结均获得孔隙率高达58%的多孔BaTiO_3陶瓷;然而1300℃烧结,陶瓷孔隙率急速下降到13%.1250℃烧结10%糊精含量的陶瓷表现出高的静水压优值(约8376×10~/(-15)Pa~(-1))和低的声阻抗(约2.84MRrayls(1Rayl=10Pa·s/m)).与1250℃相比,1280℃烧结的陶瓷晶粒之间的结合力明显增强,有利于提高陶瓷的力学强度.这些优异的性能预示着多孔钛酸钡陶瓷在传感器和水听器领域有着潜在的应用前景.  相似文献   

12.
In this study, we will develop the influences of the excess x wt% (x=0, 1, 2, and 3) Bi2O3-doped and the different fabricating process on the sintering and dielectric characteristics of 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3 ferroelectric ceramics with the aid of SEM and X-ray diffraction patterns, and dielectric–temperature curves. The 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 ceramics are fabricated by two different processes. The first process is that (Na0.5Bi0.5)TiO3 composition is calcined at 850 °C and BaTiO3 composition is calcined at 1100 °C, then the calcined (Na0.5Bi0.5)TiO3 and BaTiO3 powders are mixed in according to 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions. The second process is that the raw materials are mixed in accordance to the 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions and then calcining at 900 °C. The sintering process is carried out in air for 2 h from 1120 to 1240 °C. After sintering, the effects of process parameters on the dielectric characteristics will be developed by the dielectric–temperature curves. Dielectric–temperature properties are also investigated at the temperatures of 30–350 °C and at the frequencies of 10 kHz–1 MHz.  相似文献   

13.
贺慧芳  陈志权 《物理学报》2015,64(20):207804-207804
利用水热法合成了Bi2Te3纳米粉末, 并在300–500 ℃的温度范围内对其进行等离子烧结. X射线衍射测试表明制得的Bi2Te3粉末是单相的. 对于300–500 ℃范围内烧结的样品, 扫描电子显微镜观察发现随着烧结温度的升高样品颗粒明显增大, 但是根据X射线衍射峰的宽度计算得到的样品晶粒大小并没有明显的变化. 正电子湮没寿命测试结果表明, 所有的样品中均存在空位型缺陷, 而这些缺陷很可能存在于晶界处. 正电子平均寿命随着烧结温度的升高而单调下降, 说明较高的烧结温度导致了空位型缺陷浓度的降低. 另外, 随着烧结温度从300 ℃升高到500 ℃, 样品的热导率从0.3 W·m-1·K-1升高到了2.4 W·m-1·K-1, 这表明在纳米Bi2Te3中, 空位型缺陷和热导率之间存在着密切的联系.  相似文献   

14.
Osama A Desouky  K E Rady 《中国物理 B》2016,25(6):68402-068402
The effects of TiO_2 on sintering and nonlinear electrical properties of(98.5-x)ZnO–0.5MnO_2–0.5Co_2O_3-0.5Bi_2O_(3–x)TiO_2(x = 0.3,0.5,0.7,0.9 mol%) ceramic varistors prepared by the ceramic technique are investigated in this work.The optimum sintering temperature of the prepared samples is deduced by determining the firing shrinkage and water absorption percentages.The optimum sintering temperature is found to be 1200℃,at which each of the samples shows a maximum firing shrinkage and minimum water absorption.Also minimum water absorption appears in a sample of x = 0.9 mol%.Higher sintering temperature and longer sintering time give rise to a reduction in bulk density due to the increased amount of porosity between the large grains of ZnO resulting from the rapid grain growth induced by the liquid phase sintering.The crystal size of ZnO decreases with increasing TiO_2 doping.The addition of TiO_2 improves the nonlinear coefficient and attains its maximum value at x = 0.7 mol% of TiO_2,further addition negatively affects it.A decrease in capacitance consequently in the dielectric constant is recorded with increasing the frequency in a range of 30 kHz–200 kHz.The temperature and composition dependences of the dielectric constant and AC conductivity are also studied.The increase of temperature raises the dielectric constant because it increases ionic response to the field at any particular frequency.  相似文献   

15.
朱振业 《物理学报》2018,67(7):77701-077701
超晶格压电行为与内部正离子之间的内在联系尚缺乏相关的研究.本文基于密度泛函理论的第一性原理方法,研究了三种无铅四方相钙钛矿铁电超晶格(BaTiO_3/SrTiO_3,KNbO_3/KTaO_3和BaTiO_3/KNbO_3)中A,B位正离子对整体的极化和压电贡献.通过计算超晶格不同轴向应变条件下原子结构和Born有效电荷,获得了超晶格和各个正离子的极化值和压电系数.结果表明,在轴向压缩应变条件下(-0.15—0 A),无铅超晶格中的正离子位移D(A)和D(B)受到抑制,在拉应变时位移才显著增大,因此极化和压电行为不明显.在轴向拉伸应变作用下(0—0.15 A),无铅超晶格中各原子的极化贡献显著增大,特别是B位原子Ti,Nb和Ta的极化贡献使得总的极化强度也显著提高,并当拉应变达到一定值,超晶格才会出现明显的压电行为.无铅超晶格的极化和压电行为主要由B位正离子贡献.  相似文献   

16.
张明俊  郭智  邰仁忠  张祥志  罗豪甦 《物理学报》2015,64(14):147801-147801
从极化团簇的随机涨落出发, 利用维纳过程模型, 推导了铁电体中极化长程涨落的弛豫规律以及光强自相关函数所可能的表现形式. 阐述了微观极化团簇的弛豫过程与宏观测量弛豫规律之间的联系. 通过对原有氦氖激光光子关联谱实验装置进行改进, 观测了BaTiO3和0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3单晶中极化团簇长程涨落在居里点和立方到四方相变点附近的弛豫过程. 在BaTiO3中发现极化团簇长程涨落在居里点之上4 K存在双弛豫现象, 此现象与其有序无序相变机理相联系. 在Pb(Mg1/3Nb2/3)O3-0.29PbTiO3中发现极化团簇长程涨落在相变点两侧都存在双弛豫现象. 利用推导的理论结果很好地拟合了实验结果并提取了极化团簇长程涨落的弛豫时间. 两种样品中极化团簇长程涨落的弛豫时间都在相变点出现突变, 并呈现临界慢化现象.  相似文献   

17.
陈然  杨建参  韦银河 《强激光与粒子束》2021,33(10):104004-1-104004-7
采用中频感应加热烧结方法制备了W-1.5%La2O3-0.1%Y2O3-0.1%ZrO2和W-1.5%La2O3-0.1%Y2O3-0.08%ZrH2电子发射材料,烧结样品的致密度约为95.5%。热电子发射测试结果表明,添加氢化锆的热电子发射材料样品的零场发射电流密度大于添加氧化锆的样品,分析认为是添加的氢化锆在烧结时,发生分解,生成活性的Zr可以捕获钨晶界中的杂质氧,净化晶界,从而提高了电子发射;维氏显微硬度表明添加氢化锆样品的硬度高于添加氧化锆的样品,分析表明是氢化锆的添加有效改善了钨晶粒之间的结合性,提升了钨电子发射材料的硬度。利用SEM,EDS,XRD、金相显微镜等表面分析设备对样品进行了表征,样品结构显示添加氢化锆与添加氧化锆相比,不仅钨晶粒尺寸由13.63 μm降至11.63 μm,而且稀土相尺寸由1.87 μm降至1.66 μm,这种组织结构的变化有利于电子发射。  相似文献   

18.
史茂雷  刘磊  田芳慧  王鹏飞  李嘉俊  马蕾 《物理学报》2017,66(20):208201-208201
采用固相法制备锂离子电池用固体电解质磷酸钛锂铝Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3(LATP),研究了不同烧结温度以及助熔剂对LATP固体电解质离子电导率的影响.采用X射线衍射、能谱分析、扫描电镜和交流阻抗等方法,研究样品的结构特征、元素含量、形貌特征以及离子导电性能.结果表明,在900?C烧结可以获得结构致密、离子电导率较高的纯相LATP陶瓷固体电解质.与添加助熔剂Li BO2的样品进行对比实验发现,采用B_2O_3代替LiBO_2作为助熔剂也可以提高烧结样品的离子电导率,并且电解质的离子电导率随助熔剂添加量的增大,先增大后减小,其中添加质量百分比为2%的B_2O_3的样品具有最高的室温离子电导率,为1.61×10~(-3)S/cm.  相似文献   

19.
王伟  唐佳伟  王乐天  陈小兵 《物理学报》2013,62(23):237701-237701
采用脉冲激光沉积法制备了0.20BiInO3-0.80PbTiO3(20BI-PT)高温压电薄膜,并与0.15BiInO3-0.85PbTiO3(15BI-PT)样品进行了比较研究. X射线衍射谱显示,20BI-PT样品100峰出现了明显的劈裂,显示样品具有更高的四方对称性. FESEM图显示,20BI-PT样品中出现了部分111取向的三角形晶粒. 20BI-PT样品的铁电剩余极化(Pr)为~28 μC/cm2,矫顽场(Ec)为~120 kV/cm,相较15BI-PT样品,Pr略有增加,但同时Ec也有增加. 20BI-PT样品的横向压电系数(e31,f)约为–4.7±0.6 C/m2,和15BI-PT相比几乎一样. 介电温度谱显示,20BI-PT 样品的居里温度比15BI-PT增加了约30 ℃,达590 ℃,且介电峰没有明显的频率依赖性. Rayleigh分析显示,20BI-PT样品中内在本征因素及可翻转畴对介电非线性的贡献和15BI-PT基本相同,但是外在因素的贡献没有15BI-PT的贡献大,这可能和20BI-PT样品中晶粒111相对取向率较高有关. 关键词: 薄膜 脉冲激光沉积 铁电 压电  相似文献   

20.
Long Zhou 《中国物理 B》2023,32(1):17701-017701
Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution function of BaTiO3 and the phase transition temperatures have been investigated, and the results show that the core-shell potential model is effective and the structure of BaTiO3 is stable in a temperature range of 10 K-150 K. Molecular dynamics simulated hysteresis loops of BaTiO3 show that anisotropy can play an important role in the coercive field. Based on the rational simulation process, the effects of cantilever beam bent angle and fixed length on the polarization are analyzed. It is found that the small bent angle of the curved cantilever beam can give a proportional relationship with a fixed end length and a non-linear relationship is presented when the bent angle is much larger. The prediction of flexoelectric coefficient in BaTiO3 is 18.5 nC/m. This work provides a computational framework for the study of flexoelectric effect by using molecular dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号