首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High thermal stability of diamond-cBN-B_4C-Si composites
Institution:1. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;2. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract:Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond-cBN-B4C-Si composites sintered at high pressure and high temperature (HPHT, 5.2 GPa, 1620-1680 K for 3-5 min). The results show that the diamond, cBN, B4C, BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B-C, C-N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.
Keywords:high pressure and high temperature  diamond-cBN-B4C-Si  composites  high thermal stability  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号