首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Bernoulli-Euler梁理论,引入物理中面解耦了复合材料结构的面内变形与横向弯曲特性,研究了梯度多孔材料矩形截面梁在热载荷作用下的弯曲及过屈曲力学行为.假设沿梁厚度方向材料的性质是连续变化的,利用能量法推导了矩形截面梁的控制微分方程和边界条件,并用打靶法对无量纲化的控制方程进行数值求解.利用计算得到的结果分析了材料的性质、热载荷、边界条件对矩形截面梁非线性力学行为的影响.结果表明,对称材料模型下,固支梁与简支梁均显示出了典型的分支屈曲行为特征,而其临界屈曲热载荷值均会随着孔隙率系数的增加而单调增加.非对称材料模型下,固支梁仍显示出分支屈曲行为特征,但其临界屈曲热载荷不再随着孔隙率系数的变化而单调变化;而对于两端简支梁,发生了弯曲变形,弯曲挠度随载荷的增大而增大.  相似文献   

2.
贾金政  马连生 《应用力学学报》2020,(1):231-238,I0016
基于一阶非线性梁理论和物理中面概念,导出了纵横向载荷作用下功能梯度材料(FGM)梁非线性弯曲和过屈曲问题的控制方程,并获得了该问题的精确解;据此解研究了梯度材料性质、外载荷、横向剪切变形以及边界条件等因素对功能梯度材料梁非线性力学行为的影响,分析中假设功能梯度材料性质只沿梁厚度方向,并按成分含量的幂指数函数形式变化。结果表明:纵横载荷共同作用下,功能梯度梁的弯曲构形将有无限多个;随着梯度指数的增大,梁的变形减小,临界载荷升高;随着长高比的增大,横向剪切变形的影响减小。  相似文献   

3.
为分析表面效应对多孔梁在轴向压力下的屈曲和后屈曲行为的影响,使用Gurtin–Murdoch表面弹性理论,建立了轴向可伸长梁的非线性后屈曲控制微分方程。其中假设梁的孔隙分布在其厚度上具有对称和非对称的两种非均匀模式。采用打靶法数值求解,给出了不同孔隙率系数下多孔纳米梁发生屈曲的临界载荷和后屈曲平衡路径曲线,讨论了表面材料特性对后屈曲行为的影响。结果表明:纳米梁具有十分显著的表面效应,表面效应对多孔纳米梁的屈曲和后屈曲行为有重要影响。  相似文献   

4.
粘贴压电层功能梯度材料Timoshenko梁的热过屈曲分析   总被引:1,自引:0,他引:1  
研究了上下表面粘贴压电层的功能梯度材料Timoshenko梁在升温及电场作用下的过屈曲行为。在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了压电功能梯度Timoshenko层合梁在热-电-机械载荷作用下的几何非线性控制方程。其中,假设功能梯度的材料性质沿厚度方向按照幂函数连续变化,压电层为各向同性均匀材料。采用打靶法数值求解所得强非线性边值问题,获得了在均匀电场和横向非均匀升温场内两端固定Timoshenko梁的静态非线性屈曲和过屈曲数值解。并给出了梁的变形随热、电载荷及材料梯度参数变化的特性曲线。结果表明,通过施加电压在压电层产生拉应力可以有效地提高梁的热屈曲临界载荷,延缓热过屈曲发生。由于材料在横向的非均匀性,即使在均匀升温和均匀电场作用下,也会产生拉-弯耦合效应。但是对于两端固定的压电-功能梯度材料梁,在横向非均匀升温下过屈曲变形仍然是分叉形的。  相似文献   

5.
基于一阶非线性梁理论,利用物理中面概念导出了FGM梁的基本方程,分析了热载荷作用下简支FGM梁的弯曲行为.当坐标面置于功能梯度材料(FGM)梁的物理中面上时,其本构方程中,面内力与弯矩并不耦合,使得问题的控制方程以及边界条件得以简化.分析中假设功能梯度材料性质只沿梁厚度方向、并按成分含量的幂指数形式变化;利用打靶法数值地求解了所得方程.数值结果表明:热载荷作用下,夹紧FGM梁发生过屈曲变形,而简支梁则发生较为复杂的热弯曲变形;在同一热载荷作用下,简支FGM梁将会产生三种构形问题;剪切变形对夹紧FGM梁的热变形影响比简支梁更明显.  相似文献   

6.
热荷载作用下Timoshenko功能梯度夹层梁的静态响应   总被引:1,自引:0,他引:1  
在精确考虑轴线伸长和一阶横向剪切变形的基础上建立了Timoshenko功能梯度夹层梁在热载荷作用下的几何非线性控制方程.采用打靶法数值求解所得强非线性边值问题,获得了两端固支功能梯度夹层梁在横向非均匀升温作用下的静态热过屈曲和热弯曲变形数值解.分析了功能梯度材料参数变化、不同表层厚度和升温参数对夹层梁弯曲变形、拉-弯耦...  相似文献   

7.
杨骁  李丽 《固体力学学报》2007,28(3):313-317
基于多孔介质理论和弹性梁的大挠度理论,并考虑轴向变形,在孔隙流体仅沿轴向扩散的假设下,建立了微观不可压饱和多孔弹性梁大挠度弯曲变形的一维非线性数学模型.在此基础上,忽略饱和多孔弹性梁的轴向应变,并利用Galerkin截断法,研究了两端可渗透的简支饱和多孔弹性梁在突加横向均布载荷作用下的拟静态弯曲,给出了饱和多孔梁弯曲时挠度、弯矩和轴力以及孔隙流体压力等效力偶等沿轴线的分布曲线.揭示了大挠度非线性和小挠度线性模型的结果差异,指出大挠度非线性模型的结果小于相应小挠度线性模型的结果,并且这种差异随着载荷的增大而增大.计算表明:当无量纲载荷参数q>5时,应该采用大挠度非线性数学模型进行研究.  相似文献   

8.
李丽  杨骁 《力学季刊》2007,28(1):86-91
基于饱和多孔介质理论和弹性梁的大挠度弯曲假设,在多孔弹性梁轴线不可伸长,孔隙流体仅沿轴向方向扩散的限制下,建立了微观不可压饱和多孔弹性梁大挠度拟静态响应的一维非线性数学模型.在此基础上,利用Galerkin截断法,分析了两端可渗透的简支多孔弹性梁在突加横向均布载荷作用下的非线性弯曲,给出了梁弯曲时挠度、弯矩以及孔隙流体压力等效力偶随时间的响应曲线.数值结果表明:当载荷较小时,大挠度非线性与小挠度线性理论的结果相差很小,而当载荷较大时,非线性大挠度理论的结果小于相应线性小挠度理论的结果,并且这种差异随着载荷的增大而增大.同时,在载荷突加于梁上时,多孔弹性梁骨架起初不变形,孔隙流体压力等效力偶由零突增为非零,其值与外载荷保持平衡.随着时间的增加,梁的挠度增加,等效力偶逐渐减小为零,最终多孔梁骨架承担全部的外载荷.  相似文献   

9.
朱作权  万京 《力学季刊》2023,(2):427-434
多孔梯度梁具有优异的力学性能,受到研究者的广泛关注.然而,同时考虑轴线可伸长和剪切可变形效应的多孔梁屈曲问题尚未得到充分重视.基于屈曲控制方程和泰勒级数展开方法,推导出四种典型边界约束条件下多孔梁屈曲临界载荷的解析表达式.然后,定义轴线可伸长和剪切可变形作用的影响系数,并分别考虑影响系数,孔隙率和孔隙分布对屈曲临界载荷的影响.结果表明,影响系数会降低梁的屈曲临界载荷;孔隙率越大,临界屈曲载荷越小.此外,合理设计孔隙分布有助于提高多孔梁的稳定性.  相似文献   

10.
研究了Timoshenko功能梯度材料梁在随动分布载荷作用下的后屈曲问题。在考虑轴线伸长和一阶横向剪切变形基础上,建立了在轴向分布随动载荷作用下一端简支一端固定Timoshenko功能梯度梁的过屈曲控制方程。其中假设功能梯度材料性质只沿厚度方向变化,并以成分含量的幂指数函数形式变化。采用打靶法求解了所得线性常微分两点边值问题,获得了随动载荷作用下Timoshenko功能梯度梁的过屈曲平衡路径和平衡构形。对比了Timoshenko梁和Euler梁的后屈曲行为,并分析了材料的体积分数指数和长细比对梁屈曲行为的影响。结果表明:考虑剪切变形的Timoshenko梁的后屈曲行为与Euler梁的后屈曲行为明显不同;体积分数指数一定时,随着长细比的增加,梁的临界载荷减小;长细比一定时,随着体积分数指数的增加,梁的临界载荷也减小。  相似文献   

11.
研究了周边具有面内径向弹性约束功能梯度圆板在横向非均匀升温下的热过屈曲行为.基于von Karman薄板理论,推导出了横向非均匀加热功能梯度圆板在径向弹性约束作用下的位移形式的轴对称热过屈曲控制方程.假设功能梯度材料性质沿厚度方向按幂函数连续变化,采用打靶法求解得到非线性常微分方程边值问题,获得了周边简支和夹紧条件下功能梯度圆板的热过屈曲响应.定量分析了径向弹性约束对圆板的临界屈曲温度载荷以及热过屈曲变形的影响,给出了不同弹性约束刚度功能梯度圆板的热过屈曲平衡路径和平衡构形.数值结果表明,径向弹性约束对圆板的热过屈曲平衡路径的影响显著,随着约束刚度的减小,临界屈曲温度载荷增大.  相似文献   

12.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

13.
在某些边界条件下,功能梯度材料(FGM)梁会由于拉弯耦合产生前屈曲耦合变形,而该变形对FGM梁的稳定性有影响。本文假设FGM梁的材料性质只沿厚度方向进行变化,基于经典非线性梁理论和物理中面概念,推导出FGM梁的平衡方程以及包含前屈曲耦合变形影响的屈曲控制方程,并用打靶法进行数值求解。讨论了前屈曲耦合变形、梯度指数以及材料性质的温度依赖等因素对FGM梁非线性变形和稳定性的影响。  相似文献   

14.
基于轴线可伸长杆的过屈曲精确数学模型,采用打靶法对两端简支功能梯度压杆后屈曲行为进行了数值分析.其中假设功能梯度梁的材料性质沿厚度方向按照幂函数连续变化.给出了不同梯度指标下FGM杆的后屈曲特征曲线,并与金属和陶瓷两种单相材料杆的相应特性进行了比较,分析和讨论了载荷、材料的梯度指数、长细比对杆后屈曲平衡路径的影响.  相似文献   

15.
基于Timoshenko梁理论研究多孔功能梯度材料梁(FGMs)的自由振动问题.首先,考虑多孔功能梯度材料梁的孔隙率模型,建立了两种类型的孔隙分布.其次,基于Timoshenko梁变形理论,给出位移场方程、几何方程和本构方程,利用Hamilton原理推导多孔功能梯度材料梁的自由振动控制微分方程,并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,得到含有固有频率的等价代数特征方程.最后,计算了固定-固定(C-C)、固定-简支(C-S)和简支-简支(S-S)三种不同边界下多孔功能梯度材料梁自由振动的无量纲固有频率.将其退化为均匀材料与已有文献数据结果对照,验证了正确性.讨论了孔隙率、细长比和梯度指数对多孔功能梯度材料梁无量纲固有频率的影响.  相似文献   

16.
在Hamilton体系下,基于Euler梁理论研究了功能梯度材料梁受热冲击载荷作用时的动力屈曲问题;将非均匀功能梯度复合材料的物性参数假设为厚度坐标的幂函数形式,采用Laplace变换法和幂级数法解析求得热冲击下功能梯度梁内的动态温度场:首先将功能梯度梁的屈曲问题归结为辛空间中系统的零本征值问题,梁的屈曲载荷与屈曲模态分别对应于Hamilton体系下的辛本征值和本征解问题,由分叉条件求得屈曲模态和屈曲热轴力,根据屈曲热轴力求解临界屈曲升温载荷。给出了热冲击载荷作用下一类非均匀梯度材料梁屈曲特性的辛方法研究过程,讨论了材料的梯度特性、结构几何参数和热冲击载荷参数对临界温度的影响。  相似文献   

17.
本文研究了热环境中陶瓷-金属-陶瓷功能梯度圆板(S-FGM)的过屈曲和弯曲行为。圆板材料组分的体积分数符合Sigmoid定律,并承受沿圆板厚度方向变化的温度场作用。基于经典板理论,用能量法导出了对称S-FGM圆板静态问题的非线性平衡方程。用打靶法对所得方程进行了数值求解,并利用数值结果研究了不同边界条件、材料的组分、热载荷等因素对对称S-FGM圆板力学行为的影响。数值结果表明:对称S-FGM圆板相较于普通FGM圆板,其力学行为存在一些不同之处,且板的上下表面温升比对S型功能梯度圆板的力学行为有着显著的影响。  相似文献   

18.
李清禄  李世荣 《计算力学学报》2014,31(3):340-344,389
基于直法线假设,采用可伸长梁的几何非线性理论,建立了功能梯度材料弹性组合曲梁受切线均布随从力作用下的静态大变形数学模型。该模型不仅计及了轴线伸长,同时也精确地考虑了梁的初始曲率对变形的影响以及轴向变形与弯曲变形之间的耦合效应。用打靶法数值求解了由金属和陶瓷两相材料所构成的一种FGM组合曲梁在沿轴线均布切向随动载荷作用下的非线性平面弯曲问题,给出了不同梯度指标下FGM弹性曲梁随载荷参数大范围变化的平衡路径,并与金属和陶瓷两种单相材料曲梁的相应特性进行了比较。  相似文献   

19.
饱和多孔弹性Timoshenko梁的大挠度分析   总被引:1,自引:0,他引:1  
基于微观不可压饱和多孔介质理论和弹性梁的大挠度变形假设,考虑梁剪切变形效应,在梁轴线不可伸长和孔隙流体仅沿轴向扩散的限定下,建立了饱和多孔弹性Timoshenko梁大挠度弯曲变形的非线性数学模型.在此基础上,利用Galerkin截断法,研究了两端可渗透简支饱和多孔Timoshenko梁在突加均布横向载荷作用下的拟静态弯曲,给出了饱和多孔 Timoshenko梁弯曲变形时固相挠度、弯矩和孔隙流体压力等效力偶等随时间的响应.比较了饱和多孔Timoshenko梁非线性大挠度和线性小挠度理论以及饱和多孔 Euler-Bernoulli梁非线性大挠度理论的结果,揭示了他们间的差异,指出当无量纲载荷参数q>l0时,应采用饱和多孔Timoshenko梁或Euler-Bernoulli梁的大挠度数学模型进行分析,特别的,当梁长细比λ<30时,应采用饱和多孔Timoshenko梁大挠度数学模型进行分析.  相似文献   

20.
本文研究对称线布载荷作用下圆底扁球壳的轴对称非线性弯曲和稳定性,讨论了当几何参数固定而载荷位置发生变化吋壳体的屈曲行为,以及当载荷作用位置固定而几何参数发生变化时壳体的屈曲行为,分析了屈曲模式对临界载荷的影响,并就ν=0.3的情形给出了数值结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号