首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
在传统的DEA模型中,最优相对效率模型是在不大于1的范围内研究决策单元的效率的,最差相对效率模型是在不小于1的范围内研究决策单元的效率,这两种模型在研究投影问题时,是在不同的范围内进行的,有一定的片面性.将在interval DEA模型中,研究决策单元的投影问题,该模型是在相同的约束域内研究最优和最差相对效率模型,得出的结论将更加全面,通过两个定理给出了非DEA有效的决策单元在DEA有效面上的投影表达式和非DEA无效的决策单元在DEA无效面上的投影表达式.同时,通过一个实例对决策单元在interval DEA模型中的投影结果与在传统的DEA模型的投影结果进行了比较,发现投影结果比传统模型得到的投影结果对实际的生产有更强的指导意义.  相似文献   

2.
传统DEA方法相对于决策单元全体对决策单元进行评价,广义DEA方法相对于样本单元全体对决策单元进行评价.由于参照系的不同,对不同决策单元的相对效率评价结果可能不同.针对这种情况,对基于BC2模型的只有投入或只有产出的传统和广义DEA模型进行说明,并通过样本前沿面的移动对广义DEA模型中相对效率值进行几何刻画.  相似文献   

3.
在DEA方法中,DEA有效和弱DEA有效的决策单元位于生产前沿面上,非弱DEA有效的DEA无效决策单元位于生产可能集的内部而非生产前沿面上.通过引入生产可能集与生产前沿面移动的思想,证明只有产出(投入)的BC2模型评价下的决策单元的最优值与相应的生产前沿面的移动值存在倒数关系,以双产出(投入)情形图示说明,明确了决策单元在生产可能集中所处的位置.  相似文献   

4.
指标可取负值的基于输入与输出的DEA模型   总被引:1,自引:0,他引:1  
有关基于输入与输出的DEA模型,本文与现有文献的不同之处,一是模型中的评价指标可取负值,二是被评的决策单元可以不是所给的n个决策单元之一,三是模型并非由多目标规划模型推得.此外,给出了有关此模型的三个定理.因此,可知有关此模型的最优解存在的充分条件;在求解此模型后就能在判断决策单元的DEA有效性的同时计算出其相对效率,并能计算出其在DEA相对有效面上的"投影".  相似文献   

5.
传统网络DEA方法通过打开生产过程中的"黑箱",考虑生产过程的中间环节,对生产过程进行相对效率评价.但是传统网络DEA方法只能相对于决策单元集而不能相对于非决策单元集进行相对效率评价.给出能够相对于任意参考集对决策单元进行相对效率评价的基于C2R模型的具有阶段最终产出的广义链式网络DEA方法,初步讨论相应性质并进行算例演示.  相似文献   

6.
广义DEA方法是一种相对效率评价方法,解决了决策单元相对于任意参考系(样本单元集)的效率比较问题.在实际中,有时评价标准是确定的,决策单元的生产具有不确定性,有必要在进行生产之前基于确定性样本单元对随机性决策单元进行相对效率评价.为了解决这个问题,研究样本单元为确定值,决策单元为随机变量的广义DEA模型,分别通过期望值和机会约束将随机模型转化为确定性规划,给出决策单元GEDEA有效和GCDEA有效的概念,GEDEA有效与多目标规划Pareto有效关系,以及利用移动因子对决策单元进行有效性排序方法.  相似文献   

7.
链式网络DEA模型   总被引:19,自引:10,他引:9  
数据包络分析(DEA)是评价决策单元(DMU)相对有效性的一种工具,现已得到广泛的应用.传统的DEA不考虑系统内部结构,而是将系统作为一个"黑箱"来度量效率.针对多阶段网络结构提出一个新的网络DEA模型—链式网络DEA模型.研究网络决策单元的网络DEA有效性及各个阶段的弱DEA有效性之间的关系,给出了网络DEA有效的充分必要条件.若网络决策单元不是网络DEA有效的,根据模型可以指出系统在哪些阶段是无效的.  相似文献   

8.
传统网络DEA方法是将传统DEA方法评价过程中的"黑箱"打开,考虑输入到输出的中间环节,对生产过程中的各个环节分别评价。传统网络DEA方法获得的是相对于有效决策单元评价的结果,但有时可能要相对于非有效决策单元或者非决策单元进行评价,传统网络DEA方法无法解决该类问题。为此给出相对于非有效决策单元或者非决策单元进行评价的基于C~2R模型的广义链式网络DEA模型,并探讨相关性质.  相似文献   

9.
鉴于传统DEA模型无法区分有效决策单元,超效率DEA模型未考虑决策者的偏好,现提出面向输出的权重受限的综合超效率DEA模型及其投影概念,并讨论该模型与其他超效率DEA模型之间的关系.接着,分析模型的最优目标函数值与决策单元有效性之间的关系,并讨论面向输出的权重受限的综合超效投影与多目标规划问题的非支配解之间的关系.最后,通过对中国西部12个地区工业企业科技创新效率综合评价,并与原有方法进行比较研究,得出本文方法更具优势和合理性.  相似文献   

10.
鉴于传统DEA模型无法区分有效决策单元,超效率DEA模型未考虑决策者的偏好,现提出面向输出的权重受限的综合超效率DEA模型及其投影概念,并讨论该模型与其他超效率DEA模型之间的关系.接着,分析模型的最优目标函数值与决策单元有效性之间的关系,并讨论面向输出的权重受限的综合超效投影与多目标规划问题的非支配解之间的关系.最后,通过对中国西部12个地区工业企业科技创新效率综合评价,并与原有方法进行比较研究,得出本文方法更具优势和合理性.  相似文献   

11.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

12.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently network DEA models been developed to examine the efficiency of DMUs with internal structures. The internal network structures range from a simple two-stage process to a complex system where multiple divisions are linked together with intermediate measures. In general, there are two types of network DEA models. One is developed under the standard multiplier DEA models based upon the DEA ratio efficiency, and the other under the envelopment DEA models based upon production possibility sets. While the multiplier and envelopment DEA models are dual models and equivalent under the standard DEA, such is not necessarily true for the two types of network DEA models. Pitfalls in network DEA are discussed with respect to the determination of divisional efficiency, frontier type, and projections. We point out that the envelopment-based network DEA model should be used for determining the frontier projection for inefficient DMUs while the multiplier-based network DEA model should be used for determining the divisional efficiency. Finally, we demonstrate that under general network structures, the multiplier and envelopment network DEA models are two different approaches. The divisional efficiency obtained from the multiplier network DEA model can be infeasible in the envelopment network DEA model. This indicates that these two types of network DEA models use different concepts of efficiency. We further demonstrate that the envelopment model’s divisional efficiency may actually be the overall efficiency.  相似文献   

13.
In data envelopment analysis (DEA), efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for a category DMUs and finds the stability radius for all efficient DMUs. By means of combining some classic DEA models and with the condition that the efficiency scores of efficient DMUs remain unchanged, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalizes the conventional sensitivity analysis approach in which the inputs of efficient DMUs increase and their outputs decrease, while the inputs of inefficient DMUs decrease and their outputs increase. We find the maximum quantity of perturbations of data so that all first level efficient DMUs remain at the same level.  相似文献   

14.
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). Ranking efficient DMUs based on a rational analysis is an issue that yet needs further research. The impact of each efficient DMU in evaluation of inefficient DMUs can be considered as additional information to discriminating among efficient DMUs. The concept of reference frontier share is introduced in which the share of each efficient DMU in construction of the reference frontier for evaluating inefficient DMUs is considered. For this purpose a model for measuring the reference frontier share of each efficient DMU associated with each inefficient one is proposed and then a total measure is provided based on which the ranking is made. The new approach has the capability for ranking extreme and non-extreme efficient DMUs. Further, it has no problem in dealing with negative data. These facts are verified by theorems, discussions and numerical examples.  相似文献   

15.
Data Envelopment Analysis (DEA) is a technique based on mathematical programming for evaluating the efficiency of homogeneous Decision Making Units (DMUs). In this technique inefficient DMUs are projected on to the frontier which constructed by the best performers. Centralized Resource Allocation (CRA) is a method in which all DMUs are projected on to the efficient frontier through solving just one DEA model. The intent of this paper is to present the Stochastic Centralized Resource Allocation (SCRA) in order to allocate centralized resources where inputs and outputs are stochastic. The concept discussed throughout this paper is illustrated using the aforementioned example.  相似文献   

16.
In data envelopment analysis (DEA) efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as, those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when variations in the data are simultaneously considered for all DMUs. By means of modified DEA models, in which the specific DMU under examination is excluded from the reference set, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalises the usual sensitivity analysis approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs remain fixed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs and outputs. We study the relations of the infeasibility of modified DEA models employed and the robustness of DEA models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA efficiency classifications are robust with respect to possible data errors, particularly in the convex DEA case.  相似文献   

17.
Since in evaluating by traditional data envelopment analysis (DEA) models many decision making units (DMUs) are classified as efficient, a large number of methods for fully ranking both efficient and inefficient DMUs have been proposed. In this paper a ranking method is suggested which basically differs from previous methods but its models are similar to traditional DEA models such as BCC, additive model, etc. In this ranking method, DMUs are compared against an full-inefficient frontier, which will be defined in this paper. Based on this point of view many models can be designed, and we mention a radial and a slacks-based one out of them. This method can be used to rank all DMUs to get analytic information about the system, and also to rank only efficient DMUs to discriminate between them.  相似文献   

18.
Data envelopment analysis (DEA), considering the best condition for each decision making unit (DMU), assesses the relative efficiency and partitions DMUs into two sets: efficient and inefficient. Practically, in traditional DEA models more than one efficient DMU are recognized and these models cannot rank efficient DMUs. Some studies have been carried out aiming at ranking efficient DMUs, although in some cases only discrimination of the most efficient unit is desirable. Furthermore, several investigations have been done for finding the most CCR-efficient DMU. The basic idea of the majority of them is to introduce an integrated model which achieves an optimal common set of weights (CSW). These weights help us identify the most efficient unit in an identical condition.  相似文献   

19.
Efficiency is a relative measure because it can be measured within different ranges. The traditional data envelopment analysis (DEA) measures the efficiencies of decision-making units (DMUs) within the range of less than or equal to one. The corresponding efficiencies are referred to as the best relative efficiencies, which measure the best performances of DMUs and determine an efficiency frontier. If the efficiencies are measured within the range of greater than or equal to one, then the worst relative efficiencies can be used to measure the worst performances of DMUs and determine an inefficiency frontier. In this paper, the efficiencies of DMUs are measured within the range of an interval, whose upper bound is set to one and the lower bound is determined through introducing a virtual anti-ideal DMU, whose performance is definitely inferior to any DMUs. The efficiencies turn out to be all intervals and are thus referred to as interval efficiencies, which combine the best and the worst relative efficiencies in a reasonable manner to give an overall measurement and assessment of the performances of DMUs. The new DEA model with the upper and lower bounds on efficiencies is referred to as bounded DEA model, which can incorporate decision maker (DM) or assessor's preference information on input and output weights. A Hurwicz criterion approach is introduced and utilized to compare and rank the interval efficiencies of DMUs and a numerical example is examined using the proposed bounded DEA model to show its potential application and validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号