首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In data envelopment analysis (DEA) efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as, those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when variations in the data are simultaneously considered for all DMUs. By means of modified DEA models, in which the specific DMU under examination is excluded from the reference set, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalises the usual sensitivity analysis approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs remain fixed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs and outputs. We study the relations of the infeasibility of modified DEA models employed and the robustness of DEA models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA efficiency classifications are robust with respect to possible data errors, particularly in the convex DEA case.  相似文献   

2.
Sensitivity and stability for Banker's model of Stochastic Data Envelopment Analysis (SDEA) is studied in this paper. In the case of the DEA model, necessary and sufficient conditions to preserve the efficiency of efficient decision-making units (DMUs) and the inefficiency of inefficient DMUs are obtained for different perturbations of data in the model. The cases of perturbations of all inputs, of perturbations of output and of the simultaneous perturbations of output and all inputs are considered. An illustrative example is provided.  相似文献   

3.
求DEA有效最速方向的一般方法   总被引:2,自引:1,他引:1  
提出经验生产可能集的支撑超平面表示形式,在献[3]的基础上,对生产可能集内任意非DEA有效的决策单元,给出在生产可能集内,求解其DEA有效最速方向,使其最速达到DEA有效的一般方向,同时指出献[4]、[7]中的两处错误。  相似文献   

4.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently DEA has been extended to examine the efficiency of two-stage processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model provides not only an overall efficiency score for the entire process, but as well yields an efficiency score for each of the individual stages. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs by the efficiency scores, as in the standard DEA approach, does not necessarily yield a frontier projection. The current paper develops an approach for determining the frontier points for inefficient DMUs within the framework of two-stage DEA.  相似文献   

5.
《Optimization》2012,61(5):735-745
In real applications of data envelopment analysis (DEA), there are a number of pitfalls that could have a major influence on the efficiency. Some of these pitfalls are avoidable and the others remain problematic. One of the most important pitfalls that the researchers confront is the closeness of the number of operational units and the number of inputs and outputs. In performance measurement using DEA, the closeness of these two numbers could yield a large number of efficient units. In this article, some inputs or outputs will be aggregated and the number of inputs and outputs are reduced iteratively. Numerical examples show that in comparison to the single DEA method, our approach has the fewest efficient units. This means that our approach has a superior ability to discriminate the performance of the DMUs.  相似文献   

6.
Discretionary models of data envelopment analysis (DEA) assume that all inputs and outputs can be varied at the discretion of management or other users. In any realistic situation, however, there may exist “exogenously fixed” or non-discretionary factors that are beyond the control of a DMU’s management, which also need to be considered. This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses when some inputs are exogenously fixed. Super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. In this paper by means of modified Banker and Morey’s (BM hereafter) model [R.D. Banker, R. Morey, Efficiency analysis for exogenously fixed inputs and outputs, Operations Research 34 (1986) 513–521], in which the test DMU is excluded from the reference set, we are able to determine what perturbations of discretionary data can be tolerated before frontier DMUs become nonfrontier.  相似文献   

7.
In this paper we discuss the question: among a group of decision making units (DMUs), if a DMU changes some of its input (output) levels, to what extent should the unit change outputs (inputs) such that its efficiency index remains unchanged? In order to solve this question we propose a solving method based on Data Envelopment Analysis (DEA) and Multiple Objective Linear Programming (MOLP). In our suggested method, the increase of some inputs (outputs) and the decrease due to some of the other inputs (outputs) are taken into account at the same time, while the other offered methods do not consider the increase and the decrease of the various inputs (outputs) simultaneously. Furthermore, existing models employ a MOLP for the inefficient DMUs and a linear programming for weakly efficient DMUs, while we propose a MOLP which estimates input/output levels, regardless of the efficiency or inefficiency of the DMU. On the other hand, we show that the current models may fail in a special case, whereas our model overcomes this flaw. Our method is immediately applicable to solve practical problems.  相似文献   

8.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples.  相似文献   

9.
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU’s efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.  相似文献   

10.
This paper is primarily concerned with data envelopment analysis (DEA) of systems where negative outputs and negative inputs arise naturally. Examples of situations in which both negative inputs and negative outputs occur are given. More attention has been paid, in the literature, to the former type of problem. Most available DEA software does not solve this type of problem or copes with negative outputs and possibly negative inputs by assigning zero weights to them. A modified slacks-based measure (MSBM) model is presented, in which both negative outputs and negative inputs occur. The MSBM model overcomes the lack of translation invariance in the slacks-based measure model by drawing on the ideas from the range directional model (RDM). The MSBM model takes into account individual input and output slacks, which provides more precise evaluation of inefficient decision-making units (DMUs). It therefore, generally leads to lower efficiencies for inefficient DMUs than the RDM.  相似文献   

11.
The aim of this paper is to optimize the benchmarks and prioritize the variables of decision-making units (DMUs) in data envelopment analysis (DEA) model. In DEA, there is no scope to differentiate and identify threats for efficient DMUs from the inefficient set. Although benchmarks in DEA allow for identification of targets for improvement, it does not prioritize targets or prescribe level-wise improvement path for inefficient units. This paper presents a decision tree based DEA model to enhance the capability and flexibility of classical DEA. The approach is illustrated through its application to container port industry. The method proceeds by construction of multiple efficient frontiers to identify threats for efficient/inefficient DMUs, provide level-wise reference set for inefficient terminals and diagnose the factors that differentiate the performance of inefficient DMUs. It is followed by identification of significant attributes crucial for improvement in different performance levels. The application of this approach will enable decision makers to identify threats and opportunities facing their business and to improve inefficient units relative to their maximum capacity. In addition, it will help them to make intelligent investment on target factors that can improve their firms’ productivity.  相似文献   

12.
It has been widely recognized that data envelopment analysis (DEA) lacks discrimination power to distinguish between DEA efficient units. This paper proposes a new methodology for ranking decision making units (DMUs). The new methodology ranks DMUs by imposing an appropriate minimum weight restriction on all inputs and outputs, which is decided by a decision maker (DM) or an assessor in terms of the solutions to a series of linear programming (LP) models that are specially constructed to determine a maximin weight for each DEA efficient unit. The DM can decide how many DMUs to be retained as DEA efficient in final efficiency ranking according to the requirement of real applications, which provides flexibility for DEA ranking. Three numerical examples are investigated using the proposed ranking methodology to illustrate its power in discriminating between DMUs, particularly DEA efficient units.  相似文献   

13.
Robustness of the efficient DMUs in data envelopment analysis   总被引:2,自引:0,他引:2  
By means of modified versions of CCR model based on evaluation of a decision making unit (DMU) relative to a reference set grouped by all other DMUs, sensitivity analysis of the CCR model in data envelopment analysis (DEA) is studied in this paper. The methods for sensitivity analysis are linear programming problems whose optimal values yield particular regions of stability. Sufficient and necessary conditions for upward variations of inputs and for downward variations of outputs of an (extremely) efficient DMU which remains efficient are provided. The approach does not require calculation of the basic solutions and of the inverse of the corresponding optimal basis matrix. The approach is illustrated by two numerical examples.  相似文献   

14.
Data Envelopment Analysis (DEA) is a technique based on mathematical programming for evaluating the efficiency of homogeneous Decision Making Units (DMUs). In this technique inefficient DMUs are projected on to the frontier which constructed by the best performers. Centralized Resource Allocation (CRA) is a method in which all DMUs are projected on to the efficient frontier through solving just one DEA model. The intent of this paper is to present the Stochastic Centralized Resource Allocation (SCRA) in order to allocate centralized resources where inputs and outputs are stochastic. The concept discussed throughout this paper is illustrated using the aforementioned example.  相似文献   

15.
Data envelopment analysis (DEA) is a linear programming problem approach for evaluating the relative efficiency of peer decision making units (DMUs) that have multiple inputs and outputs. DMUs can have a two-stage structure where all the outputs from the first stage are the only inputs to the second stage, in addition to the inputs to the first stage and the outputs from the second stage. The outputs from the first stage to the second stage are called intermediate measures. This paper examines relations and equivalence between two existing DEA approaches that address measuring the performance of two-stage processes.  相似文献   

16.
While traditional data envelopment analysis (DEA) models assess the relative efficiency of similar, independent decision making units (DMUs) centralized DEA models aim at reallocating inputs and outputs among the units setting new input and output targets for each one. This system point of view is appropriate when the DMUs belong to a common organization that allocates their inputs and appropriates their outputs. This intraorganizational perspective opens up the possibility that greater technical efficiency for the organization as a whole might be achieved by closing down some of the existing DMUs. In this paper, we present three centralized DEA models that take advantage of this possibility. Although these models involve some binary variables, we present efficient solution approaches based on Linear Programming. We also present some numerical results of the proposed models for a small problem from the literature.  相似文献   

17.
We improve the efficiency interval of a DMU by adjusting its given inputs and outputs. The Interval DEA model has been formulated to obtain an efficiency interval consisting of evaluations from both the optimistic and pessimistic viewpoints. DMUs which are not rated as efficient in the conventional sense are improved so that their lower bounds become as large as possible under the condition that their upper bounds attain the maximum value one. The adjusted inputs and outputs keep each other balanced by improving the lower bound of efficiency interval, since the lower bound becomes small if all the inputs and outputs are not proportioned. In order to improve the lower bound of efficiency interval, different target points are defined for different DMUs. The target point can be regarded as a kind of benchmark for the DMU. First, a new approach to improvement by adjusting only outputs or inputs is proposed. Then, the combined approach to improvement by adjusting both inputs and outputs simultaneously is proposed. Lastly, numerical examples are shown to illustrate our proposed approaches.  相似文献   

18.
The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence, the classical DEA allows the weight flexibility. Therefore, even if they are important, the inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even if they are inefficient. This situation leads to unrealistic results. Also to eliminate the problem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a new model which has not been published in the literature. We describe it as the restricted data envelopment analysis ((ARIII(COR))) model with correlation coefficients. The aim for developing this new model, is to take into account the relations between variables using correlation coefficients. Also, these relations were added as constraints to the CCR and BCC models. For this purpose, the correlation coefficients were used in the restrictions of input–output each one alone and their combination together. Inputs and outputs are related to the degree of correlation between each other in the production. Previous studies did not take into account the relationship between inputs/outputs variables. So, only with expert opinions or an objective method, weight restrictions have been made. In our study, the weights for input and output variables were determined, according to the correlations between input and output variables. The proposed new method is different from other methods in the literature, because the efficiency scores were calculated at the level of correlations between the input and/or output variables.  相似文献   

19.
This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.  相似文献   

20.
In this paper, we use data envelopment analysis (DEA) to estimate how well regions in Serbia utilize their resources. Based on data for four inputs and four outputs we applied an output-oriented CCR DEA model and it appears that 17 out of 30 regions are efficient. For each inefficient unit, DEA identifies the sources and level of inefficiency for each input and output. An output-oriented set of targets is determined for 13 inefficient regions. In addition, the possibilities of combining DEA and linear discriminant analysis (LDA) in evaluating performance are explored. The efficient regions are ranked using a cross efficiency matrix and an output-oriented version of Andersen–Petersen’s DEA model and the results are analyzed and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号