首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Li2CoTi3O8 has an ordered Li2BB′3O8 spinel structure, space group P4332, at room temperature with 3:1 ordering of Ti and Li on the octahedral sites, and Li, Co disordered over the tetrahedral site. Rietveld refinement of variable temperature neutron powder diffraction data has shown an order-disorder phase transition in Li2CoTi3O8 which commences at ∼500 °C with Li and Co mixing on the tetrahedral and 4-fold octahedral sites and is complete at a first order structural discontinuity at ∼915 °C. The fraction of Ti on the 12-fold octahedral site exhibits a small decrease with increasing temperature, which may suggest that the disordering involves all three cations. Above 930 °C, the structure, space group Fdm, has Li, Co and Ti sharing a single-octahedral site and Li, Co sharing a tetrahedral site, although Co still exhibits a preference for tetrahedral coordination. A labelling scheme for ordered and partially ordered 3:1 spinels is devised which focuses on the occupancy of the Li,B cations.  相似文献   

2.
6Li and 7Li MAS NMR spectra including 1D-EXSY (exchange spectroscopy) and inversion recovery experiments of fast ionic conducting Li2MgCl4, Li2-xCuxMgCl4, Li2-xNaxMgCl4, and Li2ZnCl4 have been recorded and discussed with respect to the dynamics and local structure of the lithium ions. The chemical shifts, intensities, and half-widths of the Li MAS NMR signals of the inverse spinel-type solid solutions Li2-xMIxMgCl4 (MI=Cu, Na) with the copper ions solely at tetrahedral sites and sodium ions at octahedral sites and the normal spinel-type zinc compound, respectively, confirm the assignment of the low-field signal to Litet of inverse spinel-type Li2MgCl4 and the high-field signal to Lioct as proposed by Nagel et al. (2000). In contrast to spinel-type Li2-2xMg1+xCl4 solid solutions with clustering of the vacancies and Mg2+ ions, the Cu+ and Na+ ions are randomly distributed on the tetrahedral and octahedral sites, respectively. The activation energies due to the various dynamic processes of the lithium ions in inverse spinel-type chlorides obtained by the NMR experiments are Ea=6.6-6.9 and ΔG*>79 KJ mol−1 (in addition to 23, 29, and 75 kJmol-1 obtained by other techniques), respectively. The largest activation energy of >79 KJ mol−1 corresponds to hopping exchange processes of Li ions between the tetrahedral 8a sites and the octahedral 16d sites. The smallest value of 6.6-6.9 KJ mol−1, which was derived from the temperature dependence of both the spin-lattice relaxation times T1 and the correlation times τC of Litet, reveals a dynamic process for the Litet ions inside the tetrahedral voids of the structure, probably between fourfold 32e split sites around the tetrahedral 8a site.  相似文献   

3.
The lithium ion mobility in three solid electrolytes (Li8SnO6, Li7NbO6, and Li6In2O6) has been studied by NMR at several resonance frequencies from 170 to 500°K. The 7Li quadrupolar lineshape evolution shows the predominant influence on the conductivity mechanism of the vacancies in the octahedral sites of the oxygen close packing. In Li8SnO6, which has no vacancies, the lithium ions situated in the tetrahedral sites have the highest mobility. Spin-lattice relaxation times are in good agreement with the hypothesis of a Li7NbO6 2D conductivity. The values of the activation energy, increasing from Li7NbO6 to Li6In2O6 and to Li8SnO6, are found to be three times lower than those obtained from conductivity measurements.  相似文献   

4.
Spinel Li1−xCo2O4−δ samples with 0.44≤(1−x)≤1 have been synthesized by chemically extracting lithium with the oxidizer NO2BF4 in acetonitrile medium from the LT-LiCoO2 synthesized at 400°C. Rietveld analysis of the X-ray diffraction data reveals that the Li1−xCo2O4−δ samples adopt the normal cubic spinel structure with a cation distribution of (Li1−x)8a[Co2]16dO4−δ. Redox iodometric titration data indicate that the LT-LiCoO2 tends to lose oxygen on extracting lithium and the spinel Li1−xCo2O4−δ samples are oxygen-deficient. Both infrared spectroscopic and magnetic susceptibility data suggest that the LiCo2O4−δ spinel is metallic with itinerant electrons. The tendency to lose oxygen on extracting lithium from the LT-LiCoO2 and the observed metallic behavior of the spinel LiCo2O4−δ are explained on the basis of a qualitative band diagram.  相似文献   

5.
The pure Cr2O3 coated Li4Ti5O12 microspheres were prepared by a facile and cheap solutionbased method with basic chromium(III) nitrate solution (pH=11.9). And their Li-storage properties were investigated as anode materials for lithium rechargeable batteries. The pure Cr2O3 works as an adhesive interface to strengthen the connections between Li4Ti5O12 particles, providing more electric conduction channels, and reduce the inter-particle resistance. Moreover, LixCr2O3, formed by the lithiation of Cr2O3, can further stabilize Li7Ti5O12 with high electric conductivity on the surface of particles. While in the acid chromium solution (pH=3.2) modification, besides Cr2O3, Li2CrO4 and TiO2 phases were also found in the final product. Li2CrO4 is toxic and the presence of TiO2 is not welcome to improve the electrochemical performance of Li4Ti5O12 microspheres. The reversible capacity of 1% Cr2O3-coated sample with the basic chromium solution modification was 180 mAh/g at 0.1 C, and 134 mAh/g at 10 C. Moreover, it was even as high as 127 mAh/g at 5 C after 600 cycles. At-20℃, its reversible specific capacity was still as high as 118 mAh/g.  相似文献   

6.
The lithium insertion in the positive electrode material Li1+αV3O8 (α close to 0.1-0.2) includes a phenomenon near 2.6 V (voltage vs. the Li metal electrode), the mechanism being a two-phase process with the transformation from ca. Li2.9V3O8 to ca. Li4V3O8. Near 2.4 V down to 2 V, Li is inserted in a single phase up to ca. Li5V3O8. Chemical Li insertions have been performed in a Li1.1V3O8 precursor prepared at 350 °C and the structures of the products Li2.7V3O8 (before the 2.6 V phenomenon) and Li4.8V3O8 (near the expected maximum) have been studied by a combined Rietveld refinement of X-ray and neutron diffraction data. The structure of Li4.8V3O8 is an ordered derivative of the rock-salt type, with all the Li and V ions in slightly distorted octahedral sites. Li2.7V3O8 has a poor crystallization state and, although the expected V3O8 layers are obtained, only a part of the Li sites have been reliably determined. Between adjacent V3O8 layers, several unidentified sites are likely weakly occupied, thus giving a markedly disordered character for the structure of the compound formed just before the transition at 2.6 V. The atomic shifts at the transition are briefly discussed.  相似文献   

7.
A study has been made of the structural and thermal phase behavior of the mixed system αFe2O3xLi2O with a view toward investigating the changes occurring in the properties of different compositions due to substitution of diamagnetic Li+ for Fe3+ at B sites in the inverse spinel lattice. This also indicates whether the addition of Li2O, over and above that (x = 0.2) required for the formation of the spinel LiFe5O8, enters the substitutional or interstitial sites. Characterization by X-ray powder diffraction, initial magnetic susceptibility, magnetic hysteresis, Mössbauer spectroscopy, and differential thermal analysis clearly indicates that Li+ does not enter the spinel lattice, but forms a biphasic system LiFe5O8 and LiFeO2, which are not miscible.  相似文献   

8.
The structure of Li4?2xSi1?xSxO4 (x ≈ 0.32) has been determined from neutron powder diffraction studies at room temperature, 350, and 700°C. This compound, which is a member of the series of ionic-conducting solid solutions formed between Li4SiO4 and Li2SO4, is isostructural with Li3PO4. The space group is Pmnb, with a = 6.1701(1), b = 10.6550(2), c = 5.0175(1)Å at room temperature. The distribution of lithium ions suggests the occurrence of a defect cluster in which the inclusion of an interstitial lithium ion causes displacements of the adjacent lithium ions of the normal Li3PO4 structure. There appears to be little variation of the structure with temperature.  相似文献   

9.
We describe the synthesis and characterization of a new series of oxides, Li2MTiO4 (M=Mn, Fe, Co, Ni) that crystallize in the rocksalt structure. For M=Ni, we have also obtained a low-temperature modification that adopts a Li2SnO3-type structure. All the phases, excepting M=Ni, undergo oxidative deinsertion of lithium in air/O2 at elevated temperatures (>150°C), yielding LiMTiO4 (M=Mn, Fe) spinels and a spinel-like Li1+xCoTiO4 as final products.  相似文献   

10.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

11.
The effect of lithium and manganese ions on the synthesis, phase purity, and electrochemical properties of tartaric acid gel processed lithium manganese oxide spinel were investigated. The poor bonding between both lithium and manganese ions with tartaric acid was shown by the FT-IR analysis when lithium nitrate and/or manganese nitrate were used as sources. Li2MnO3 and Mn2O3 impurities formed in addition to lithium manganese oxides when nitrate salts were used as the sources. When acetate salts were used as sources for the lithium and manganese ions, single-phase LiMn2O4 was obtained. These results indicate that homogeneous bonding between acetate salt and tartaric acid was formed. The capacity of single-phase LiMn2O4 calcined at 500°C was 117 mAh/g which was much higher than those containing Mn2O3 and Li2MnO3 impurity compounds. Thus, sources of lithium and manganese ions play an important role in the synthesis and electrochemical behaviors of lithium manganese oxide spinel.  相似文献   

12.
The garnets Li3Nd3W2O12 and Li5La3Sb2O12 have been prepared by heating the component oxides and hydroxides in air at temperatures up to 950 °C. Neutron powder diffraction has been used to examine the lithium distribution in these phases. Both compounds crystallise in the space group with lattice parameters a=12.46869(9) Å (Li3Nd3W2O12) and a=12.8518(3) Å (Li5La3Sb2O12). Li3Nd3W2O12 contains lithium on a filled, tetrahedrally coordinated 24d site that is occupied in the conventional garnet structure. Li5La3Sb2O12 contains partial occupation of lithium over two crystallographic sites. The conventional tetrahedrally coordinated 24d site is 79.3(8)% occupied. The remaining lithium is found in oxide octahedra which are linked via a shared face to the tetrahedron. This lithium shows positional disorder and is split over two positions within the octahedron and occupies 43.6(4)% of the octahedra. Comparison of these compounds with related d0 and d10 phases shows that replacement of a d0 cation with d10 cation of the same charge leads to an increase in the lattice parameter due to polarisation effects.  相似文献   

13.
The sections Li2MCl4?4xBr4x of the quaternary systems LiCl-LiBr-MCl2-MBr2 with M = Mn, Cd, and Fe were studied by high-temperature X-ray diffraction patterns and DTA and DSC measurements. In the quasibinary lithium manganese halide system complete series of solid solutions exist between the inverse spinels Li2MnCl4 and Li2MnBr4. Li2MnBr4 and solid solutions with x > 0.54 undergo phase transitions to tetragonal spinels at lower temperatures. In the nonquasibinary system with M = Cd, only at temperatures near 400°C a complete series of mixed crystals is formed. At lower temperatures the system is mainly two-phase with rock salt-type Li1?yCd0.5yCl1?xBrx and cadmium chloride-type Cd1?yLi2yCl2?2xBr2x solid solutions in equilibrium. The lithium iron halide system is similar to that of cadmium, but spinel-type Li2FeBr4 does not exist at any temperature. The manganese and cadmium halide spinels and spinel solid solutions undergo phase transitions to NaCl defect structures at elevated temperatures.  相似文献   

14.
The thermodynamic properties of the Fe3O4ZnFe2O4 spinel solid solution were determined at 900°C by the use of the solid electrolyte galvanic cell Fe2O3 + Fe3O4|O2?|Fe2O3 + ZnxFe3?xO4The activity values obtained exhibit slight negative deviation from the ideal solution model. An analysis of the free energy of mixing of the spinel solid solution provided information on the distribution of cations between the tetrahedral and octahedral sites of the spinel lattice. This is the basis for the estimation of the free energy of formation of pure zinc ferrite from oxides. ΔG0ZnFe2O4 = ?2740 ? 1.6 T cal mole?1  相似文献   

15.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   

16.
A single crystal of ordered LiAl5O8 has been prepared by image furnace melting and its structure has been determined; 400 X-ray reflections were collected on an automatic counter diffractometer (Mo radiation). The structure is of the spinel type. The space group is P4332 (or P4132); the lattice parameter is a = 7.908(2), Å, Z = 4. The value of R is 0.022. The distribution of cations shows the absence of Li+ ions in tetrahedral cation sites and 1–3 imperfect ordering of Li+ and Al3+ in octahedral cation sites of spinel.  相似文献   

17.
LiMn2O4表面包覆Li4Ti5O12的制备及倍率特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相法合成了尖晶石型LiMn2O4,并通过溶胶-凝胶法制备了不同物质的量的百分比含量Li4Ti5O12包覆的正极材料。X-射线衍射和扫描电镜结果表明,Li4Ti5O12微粒包覆在LiMn2O4的表面没有产生晶体结构的变化。实验电池在室温下,以1C,2C和5C倍率作充放电循环测试;结果表明,与未包覆的LiMn2O4相比,表面包覆Li4Ti5O12微粒的正极材料在高倍率下具有更好的循环稳定性。  相似文献   

18.
HeI-excited valence-band ultraviolet photoelectron spectra and MgKα-excited Ti-2p X-ray photoelectron spectra are reported for the spinel materials LiTi2O4 and Li43Ti53O4. The presence of a Fermi edge in the ultraviolet photoelectron spectrum of LiTi2O4 confirms the metallic nature of this material, although the measured density of states at the Fermi energy is much lower than that expected from an independent-electron interpretation of the magnetic susceptibility. This difference is attributed to a strong interaction of the conduction electrons with the lattice vibrations. The localization of conduction electrons that occurs in the final state in the Ti-2p X-ray photoelectron spectrum of LiTi2O4 is attributed to a Coulomb interaction with a core hole.  相似文献   

19.
Compounds formed by the insertion of lithium into the rutile structure hosts RuO2 and IrO2 were studied by X-ray and neutron powder diffraction techniques. Compositions in the range LixMO2, M = Ru or Ir, 0 < x < 1 are two-phase materials consisting of unreacted host, x = 0, and limiting compositions x = 0.9 in both cases. Preparation of compounds with x > 1 was unsuccessful. Li0.9RuO2 and Li0.9IrO2 have orthorhombic cells with a = 5.062(3), b = 4.967(4), c = 2.771(4) and a = 4.962(4), b = 4.758(4), c = 3.108(6), respectively. Compared to the host rutile (tetragonal) cells those of the insertion compounds are greatly expanded along [100] and [010], ~0.5 Å for both, and contracted along [001], by ~0.3 Å for Li0.9RuO2 and 0.05 Å for Li0.9IrO2. The space group for both insertion phases appears to be Pnnm, a subgroup of the rutile space group P42mnm. The structure of Li0.9RuO2 was solved from neutron diffraction data. Lithium exists as Li+ in octahedral sites. The LiO coordination is highly regular with two bonds at 2.05(1) Å and four at 2.08(2) Å. The overall structure is essentially an ordered NiAs-type very similar to but more regular than the previously reported LiMoO2. Attempts to solve the structure of Li0.9IrO2 from both X-ray and neutron powder data were unsuccessful due, presumably, to severe preferred orientation.  相似文献   

20.
LiFe0.5Ti1.5O4 was synthesized by solid-state reaction carried out at 900 °C in flowing argon atmosphere, followed by rapid quenching of the reaction product to room temperature. The compound has been characterized by X-ray powder diffraction (XRD) and 57Fe Mössbauer effect spectroscopy (MES). It crystallizes in the space group P4332, a = 8.4048(1) Å. Results from Rietveld structural refinement indicated 1:3 cation ordering on the octahedral sites: Li occupies the octahedral (4b) sites, Ti occupies the octahedral (12d) sites, while the tetrahedral (8c) sites have mixed (Fe/Li) occupancy. A small, about 5%, inversion of Fe on the (4b) sites has been detected. The MES data is consistent with cation distribution and oxidation state of Fe, determined from the structural data.The title compound is thermally unstable in air atmosphere. At 800 °C it transforms to a mixture of two Fe3+ containing phases – a face centred cubic spinel Li(1+y)/2Fe(5−3y)/2TiyO4 and a Li(z−1)/2Fe(7−3z)/2TizO5 – pseudobrookite. The major product of thermal treatment at 1000 °C is a ramsdellite type lithium titanium iron(III) oxide, accompanied by traces of rutile and pseudobrookite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号