首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mixed crystals of Li[Kx(NH4)1−x]SO4 have been obtained by evaporation from aqueous solution at 313 K using different molar ratios of mixtures of LiKSO4 and LiNH4SO4. The crystals were characterized by Raman scattering and single-crystal and powder X-ray diffraction. Two types of compound were obtained: Li[Kx(NH4)1−x]SO4 with x?0.94 and Li2KNH4(SO4)2. Different phases of Li[Kx(NH4)1−x]SO4 were yielded according to the molar ratio used in the preparation. The first phase is isostructural to the room-temperature phase of LiKSO4. The second phase is the enantiomorph of the first, which is not observed in pure LiKSO4, and the last is a disordered phase, which was also observed in LiKSO4, and can be assumed as a mixture of domains of two preceding phases. In the second type of compound with formula Li2KNH4(SO4)2, the room-temperature phase is hexagonal, symmetry space group P63 with cell-volume nine times that of LiKSO4. In this phase, some cavities are occupied by K+ ions only, and others are occupied by either K+ or NH4+ at random. Thermal analyses of both types of compounds were performed by DSC, ATD, TG and powder X-ray diffraction. The phase transition temperatures for Li[Kx(NH4)1−x]SO4x?0.94 were affected by the random presence of the ammonium ion in this disordered system. The high-temperature phase of Li2KNH4(SO4)2 is also hexagonal, space group P63/mmc with the cell a-parameter double that of LiKSO4. The phase transition is at 471.9 K.  相似文献   

2.
The crystal structures of three lithium titanates by neutron diffraction powder profile analysis were determined. The tetragonal anatase form of TiO2 becomes orthorhombic on ambient-temperature lithium insertion to Li0.5TiO2 due to the formation of TiTi bonds. The lithium partially occupies the highly distorted octahedral interstices in the anatase framework in fivefold-coordination with oxygen. Cubic LiTi2O4 formed by heating Li0.5TiO2 anatase has a normal spinel structure with Li in the tetrahedral sites. In Li2Ti2O4 formed by reacting LiTi2O4 spinel with n-BuLi at ambient temperature, the titanium remains in the spinel positions but the lithium is displaced, filling all the available octahedral sites.  相似文献   

3.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

4.
Li2CoTi3O8 has an ordered Li2BB′3O8 spinel structure, space group P4332, at room temperature with 3:1 ordering of Ti and Li on the octahedral sites, and Li, Co disordered over the tetrahedral site. Rietveld refinement of variable temperature neutron powder diffraction data has shown an order-disorder phase transition in Li2CoTi3O8 which commences at ∼500 °C with Li and Co mixing on the tetrahedral and 4-fold octahedral sites and is complete at a first order structural discontinuity at ∼915 °C. The fraction of Ti on the 12-fold octahedral site exhibits a small decrease with increasing temperature, which may suggest that the disordering involves all three cations. Above 930 °C, the structure, space group Fdm, has Li, Co and Ti sharing a single-octahedral site and Li, Co sharing a tetrahedral site, although Co still exhibits a preference for tetrahedral coordination. A labelling scheme for ordered and partially ordered 3:1 spinels is devised which focuses on the occupancy of the Li,B cations.  相似文献   

5.
High-pressure synthesis in an oxygen-rich atmosphere yields solid solutions between LiNiO2 and Li2NiO3 over the whole concentration range. Structural characterization of the high-pressure oxides was performed using powder XRD, SEM analysis, IR spectroscopy, EPR spectroscopy at 9.23 and 115 GHz and magnetic susceptibility measurements. The crystal structure of Li[LixNi1−x]O2 ,, changes from trigonal R-3m to monoclinic C2/m at Li-to-Ni ratio of 2 (or ). The incorporation of Li into NiO2-layers causes a decrease in the mean Li-O and Ni1-xLix-O bond distance. Li and Ni ions in the mixed Ni1-xLixO2-layers display a tendency to order at a short length scale in such a way that mimics the Li1/3Ni2/3-arrangment of the end Li[Li1/3Ni2/3]O2 composition. The charge distribution in these oxides proceeds via Ni3+ and Ni4+ ions.  相似文献   

6.
The magnetic susceptibility of polycrystalline solid solutions CoRhxGa2?xO4 with a spinel structure have been measured between 4.2 and 1000°K. The magnetic properties have been found to vary with the composition x as a consequence of the variation in the distribution of Co2+ ions among tetrahedral and octahedral sites. The low-temperature magnetic behavior reveals an antiferromagnetic order and the concomitant presence of finite clusters of exchange-coupled Co2+ ions and of isolated paramagnetic ions.  相似文献   

7.
LiMnC2O4(Ac) precursor in which Li+ and Mn2+ were amalgamated in one molecule was prepared by solid-state reaction at room-temperature using manganese acetate, lithium hydroxide and oxalic acid as raw materials. By thermo-decomposition of LiMnC2O4(Ac) at various temperatures, a series of Li1+y[Mn2−xLix]16dO4 spinels were prepared with Li2MnO3 as impurities. The structure and phase transition of these spinels were investigated by XRD, TG/DTA, average oxidation state of Mn and cyclic voltammeric techniques. Results revealed that the Li-Mn-O spinels with high Li/Mn ratio were unstable at high temperature, and the phase transition was associated with the transfer of Li+ from octahedral 16c sites to 16d sites. With the sintering temperature increasing from 450 to 850 °C, the phase structure varied from lithiated-spinel Li2Mn2O4 to Li4Mn5O12-like to LiMn2O4-like and finally to rock-salt LiMnO2-like. A way of determining x with average oxidation state of Mn and the content of Li2MnO3 was also demonstrated.  相似文献   

8.
Phase relations in the MnO-SiO2-Li4SiO4 subsystem have been investigated by X-ray diffraction after solid-state reactions in hydrogen at 950-1150 °C. Both cation-deficient and cation-excess solid solutions Li2+2xMn1−xSiO4 (−0.2?x?0.2) based on Li2MnSiO4 have been found. According to Rietveld analysis, Li2MnSiO4 (monoclinic, P21/n, a=6.3368(1), b=10.9146(2), c=5.0730(1) Å, β=90.987(1)°) is isostructural with γII-Li2ZnSiO4 and low-temperature Li2MgSiO4. All components are in tetrahedral environment, (MnSiO4)2− framework is built of four-, six- and eight-member rings of tetrahedra. Testing Li2MnSiO4 in an electrochemical cell showed that only 4% Li could be extracted between 3.5 and 5 V against Li metal. These results are discussed in comparison with those for recently reported orthorhombic layered Li2MnSiO4 and other tetrahedral Li2MXO4 phases.  相似文献   

9.
Several compounds of the (Na1−xLix)CdIn2(PO4)3 solid solution were synthesized by a solid-state reaction in air, and pure alluaudite-like compounds were obtained for x=0.00, 0.25, and 0.50. X-ray Rietveld refinements indicate the occurrence of Cd2+ in the M(1) site, and of In3+ in the M(2) site of the alluaudite structure. This non-disordered cationic distribution is confirmed by the sharpness of the infrared absorption bands. The distribution of Na+ and Li+ on the A(1) and A(2)′ crystallographic sites cannot be accurately assessed by the Rietvled method, probably because the electronic densities involved in the Na+→Li+ substitution are very small. A comparison with the synthetic alluaudite-like compounds, (Na1−xLix)MnFe2(PO4)3, indicates the influence of the cations occupying the M(1) and M(2) sites on the coordination polyhedra morphologies of the A(1) and A(2)′ crystallographic sites.  相似文献   

10.
Compounds formed by the insertion of lithium into the rutile structure hosts RuO2 and IrO2 were studied by X-ray and neutron powder diffraction techniques. Compositions in the range LixMO2, M = Ru or Ir, 0 < x < 1 are two-phase materials consisting of unreacted host, x = 0, and limiting compositions x = 0.9 in both cases. Preparation of compounds with x > 1 was unsuccessful. Li0.9RuO2 and Li0.9IrO2 have orthorhombic cells with a = 5.062(3), b = 4.967(4), c = 2.771(4) and a = 4.962(4), b = 4.758(4), c = 3.108(6), respectively. Compared to the host rutile (tetragonal) cells those of the insertion compounds are greatly expanded along [100] and [010], ~0.5 Å for both, and contracted along [001], by ~0.3 Å for Li0.9RuO2 and 0.05 Å for Li0.9IrO2. The space group for both insertion phases appears to be Pnnm, a subgroup of the rutile space group P42mnm. The structure of Li0.9RuO2 was solved from neutron diffraction data. Lithium exists as Li+ in octahedral sites. The LiO coordination is highly regular with two bonds at 2.05(1) Å and four at 2.08(2) Å. The overall structure is essentially an ordered NiAs-type very similar to but more regular than the previously reported LiMoO2. Attempts to solve the structure of Li0.9IrO2 from both X-ray and neutron powder data were unsuccessful due, presumably, to severe preferred orientation.  相似文献   

11.
用柠檬酸配位燃烧法合成了Mn1-x(Li,Ti)xCo2O4系列尖晶石型复合氧化物催化剂,使用FTIR和XRD方法对催化剂结构进行表征,通过程序升温氧化反应(TPO)技术对这些催化剂在模拟柴油机尾气条件下进行同时消除NOx和柴油碳黑反应的活性评价。结果表明,掺杂Li或Ti后的Mn1-x(Li,Ti)xCo2O4系列催化剂仍然保持了完整的尖晶石型复合氧化物结构,这些催化剂对同时消除柴油机尾气中的碳黑颗粒和NOx具有良好的催化性能,其中Li或Ti的掺杂量为x=0.05较佳,结合碳黑燃烧与NOx还原总的催化效果,Mn0.95Li0.05Co2O4具有最好的催化活性。  相似文献   

12.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

13.
The lithium ion mobility in three solid electrolytes (Li8SnO6, Li7NbO6, and Li6In2O6) has been studied by NMR at several resonance frequencies from 170 to 500°K. The 7Li quadrupolar lineshape evolution shows the predominant influence on the conductivity mechanism of the vacancies in the octahedral sites of the oxygen close packing. In Li8SnO6, which has no vacancies, the lithium ions situated in the tetrahedral sites have the highest mobility. Spin-lattice relaxation times are in good agreement with the hypothesis of a Li7NbO6 2D conductivity. The values of the activation energy, increasing from Li7NbO6 to Li6In2O6 and to Li8SnO6, are found to be three times lower than those obtained from conductivity measurements.  相似文献   

14.
Spinel compound LiNi1−xMnxVO4 (0≤x≤0.4) had been prepared by using the moist chemical method. X-ray diffraction spectra showed that the lattice constant increased with x in the LiNi1−xMnxVO4, XPS spectra indicating that Li1s had a chemical shift towards lesser binding energy, and manganese in LiNi1−xMnxVO4 existing as the mixed valence of Mn2+ and Mn3+. The electrochemical charge and discharge testing at a current density of 0.1 mA/cm2 between the potentials of 4.0 and 3.0 V vs Li/Li+ in 1 mol/dm3 LiPF6/EC+DEC (1:1 by volume) at 25°C showed that LiNi1−xMnxVO4 cell has a better rechargeability, but a lower cell voltage of 4.0 V vs Li/Li+ than that without the doping sample, and the capacity and the cycle efficiency of the Li/LiNi1−xMnxVO4 cells increased with x in the LiNi1−xMnxVO4.  相似文献   

15.
Insertion/extraction of lithium ions into/from Bi2Se3 crystals was investigated by means of cyclic voltammetry. The process of insertion is reflected in the appearance of two bands on voltammograms at ∼1.7 and ∼1.5 V, corresponding to the insertion of Li+ ions into octahedral and tetrahedral sites of the van der Waals gap of these layered crystals. The process of extraction of Li+ ions from the gap results in the appearance of four bands on the voltammograms. The bands 1 and 2 at ∼2.1 and ∼2.3 V correspond to the extraction of a part of Li+ guest ions from the octahedral and tetrahedrals sites and this extraction has a character of a reversible intercalation/deintercalation process. A part of Li+ ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe2.Bi3Se4) type. A further extraction of Li+ ions from the van der Waals gap is associated with the presence of bands 3 and 4 placed at ∼2.5 and ∼2.7 V on the voltammograms as their extraction needs higher voltage due to the influence of negative charges localized on these clusters.  相似文献   

16.
Li2WO4II, synthesized at 3 kbar and 630°C, has tetragonal symmetry, I41amd, a = 11.954(2) and c = 8.410(1)Å, Z = 16, Dcalc = 5.78 g cm?3. The structure was determined by countermeasuring 469 independent reflections from a single crystal and was refined up to R = 0.032 by the full-matrix least-squares method. It is based on cubic closest packing of oxygen atoms and is closely related to the β-phase structure of Mg2SiO4. W and Li(2) are in octahedral sites and Li(1), in tetrahedral sites. Four Li(1)O4 tetrahedra form a Li4O12 group, WO6 and Li(2)O6 construct a octahedral double chain along the a axis, and four WO6 octahedra build a W4O16 group by sharing their octahedral edges.  相似文献   

17.
Superfine Li1−xMn2O4−σ powders were successfully synthesized by the alcohol-thermal method using 0.01 mol of MnO2, 0.01mol of LiOH·H2O, and 0.06mol of NaOH as starting materials at 160-200°C. The products are characterized by XRD, TEM, ED, BET, and ICP. Results show that the Li0.74Mn2O3.74 powder prepared at 200°C has an average size of 180 nm with BET surface areas of 16.44 m2/g. A possible formation mechanism is proposed. It was concluded that the alcohol acts not only as the solvent but also as the reducing agent in the synthesis of Li1−xMn2O4−σ powders. The effects of reaction temperature and the contents of NaOH and LiOH on the formation of single phase Li1−xMn2O4−σ were investigated.  相似文献   

18.
The oxygen vacancies distribution in the rigid lattice and the thermally activated motion of oxygen atoms are studied in La1−xSrxGa1−xMgxO3−x (x=0.00; 0.05; 0.10; 0.15 and 0.20) compounds. For that 71Ga, 25Mg and 17O NMR was performed from 100 K up to 670 K, and ion conductivity measurements were carried out up to 1273 K. The comparison of the electric field gradients at the Ga- and Mg-sites evidences that oxygen vacancies appear exclusively near gallium cations as a species trapped below room temperature in local clusters, GaO5/2-□-GaO5/2. These clusters decay at higher temperature into mobile constituents of the structural octahedra Ga(O5/61/6)6/2. At the same time, the nearest octahedral oxygen environment of magnesium cations persists at different doping levels. The case of two adjacent vacant anion sites is found highly unlikely within the studied doping range. The thermally activated oxygen motion starts to develop above room temperature as is observed from both the motional narrowing of 17O NMR spectra and the 17O nuclear spin-lattice relaxation rate. The obtained results show that two types of motion exist, a slow motion and a fast one. The former is a long-range diffusion whereas the latter is a local back and forth oxygen jumps between two adjacent anion sites. These sites are strongly differentiated by the probability of the vacancy formation, like the vacant apical site and the occupied equatorial site in the orthorhombic compositions x <0.15.  相似文献   

19.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

20.
Spinel Li1−xCo2O4−δ samples with 0.44≤(1−x)≤1 have been synthesized by chemically extracting lithium with the oxidizer NO2BF4 in acetonitrile medium from the LT-LiCoO2 synthesized at 400°C. Rietveld analysis of the X-ray diffraction data reveals that the Li1−xCo2O4−δ samples adopt the normal cubic spinel structure with a cation distribution of (Li1−x)8a[Co2]16dO4−δ. Redox iodometric titration data indicate that the LT-LiCoO2 tends to lose oxygen on extracting lithium and the spinel Li1−xCo2O4−δ samples are oxygen-deficient. Both infrared spectroscopic and magnetic susceptibility data suggest that the LiCo2O4−δ spinel is metallic with itinerant electrons. The tendency to lose oxygen on extracting lithium from the LT-LiCoO2 and the observed metallic behavior of the spinel LiCo2O4−δ are explained on the basis of a qualitative band diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号