首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We describe the synthesis and characterization of a new series of oxides, Li2MTiO4 (M=Mn, Fe, Co, Ni) that crystallize in the rocksalt structure. For M=Ni, we have also obtained a low-temperature modification that adopts a Li2SnO3-type structure. All the phases, excepting M=Ni, undergo oxidative deinsertion of lithium in air/O2 at elevated temperatures (>150°C), yielding LiMTiO4 (M=Mn, Fe) spinels and a spinel-like Li1+xCoTiO4 as final products.  相似文献   

2.
The phase diagrams of the spinel systems Cd1?xCuxCr2S4, Cd1?xCuxCr2Se4, and Mn1?xCuxCr2S4 have been studied on the basis of X-ray powder photographs of quenched samples and high-temperature X-ray diffraction patterns. At room temperature the mutual solid solubilities of the metallic copper and the semiconducting cadmium and manganese spinels are only small (x < 0.05 and >0.95). The interchangeability, however, increases largely with increasing temperature. Complete series of mixed crystals, as in the Zn1?xCuxCr2X4 (X = S, Se) systems, however, are not formed. The solid solutions with x > 0.07 and <0.95, x > 0.095 and <0.90, and x > 0.36 and <0.87, respectively, formed at higher temperatures cannot be quenched to room temperature without decomposition. The unit cell dimensions of the spinel solid solutions studied obviously do not obey Vegard's rule.  相似文献   

3.
Extralithiated chromium-doped finely divided lithium-manganese spinels are synthesized as a result of a two-step solid-phase process with use made of the fusion-saturation method. The spinels are intended for application as cathodic materials in lithium-ion batteries. The phase composition and structural characteristics of samples of cathodic materials of the type Li x Mn2?y Cr y O4 are studied. The samples with x = 1.0?1.2 and y = 0?0.5 are characterized by phase purity and cubic syngony with parameter a = 0.817?0.823 nm and a disperseness equal to 1–2 nm. The maximum content of chromium and lithium in Li x Mn2?y Cr y O4 that does not lead to violation of cubic syngony is determined. Lithium excess in the cathodic material that does not exceed 0.2 formula units may be used for compensating the irreversible capacity. Replacing some manganese atoms by chromium may facilitate retention of the structures’s integrity in the course of cycling.  相似文献   

4.
Two ranges of solid solutions were prepared in the system Li4SiO4Li3VO4: Li4?xSi1?xVxO4, 0 < x ? 0.37 with the Li4SiO4 structure and Li3+yV1?ySiyO4, 0.18 ? y ? 0.53 with a γ structure. The conductivity of both solid solutions is much higher than that of the end members and passes through a maximum at ~40Li4SiO4 · 60Li3VO4 with values of ~1 × 10?5 ohm?1 cm?1 at 20°C, rising to ~4 × 10?2 ohm?1 cm?1 at 300°C. These conductivities are several times higher than in the corresponding Li4SiO4Li3(P,As)O4 systems, especially at room temperature. The solid solutions are easy to prepare, are stable in air, and maintain their conductivity with time. The mechanism of conduction is discussed in terms of the random-walk equation for conductivity and the significance of the term c(1 ? c) in the preexponential factor is assessed. Data for the three systems Li4SiO4Li3YO4 (Y = P, As. V) are compared.  相似文献   

5.
6Li and 7Li MAS NMR spectra including 1D-EXSY (exchange spectroscopy) and inversion recovery experiments of fast ionic conducting Li2MgCl4, Li2-xCuxMgCl4, Li2-xNaxMgCl4, and Li2ZnCl4 have been recorded and discussed with respect to the dynamics and local structure of the lithium ions. The chemical shifts, intensities, and half-widths of the Li MAS NMR signals of the inverse spinel-type solid solutions Li2-xMIxMgCl4 (MI=Cu, Na) with the copper ions solely at tetrahedral sites and sodium ions at octahedral sites and the normal spinel-type zinc compound, respectively, confirm the assignment of the low-field signal to Litet of inverse spinel-type Li2MgCl4 and the high-field signal to Lioct as proposed by Nagel et al. (2000). In contrast to spinel-type Li2-2xMg1+xCl4 solid solutions with clustering of the vacancies and Mg2+ ions, the Cu+ and Na+ ions are randomly distributed on the tetrahedral and octahedral sites, respectively. The activation energies due to the various dynamic processes of the lithium ions in inverse spinel-type chlorides obtained by the NMR experiments are Ea=6.6-6.9 and ΔG*>79 KJ mol−1 (in addition to 23, 29, and 75 kJmol-1 obtained by other techniques), respectively. The largest activation energy of >79 KJ mol−1 corresponds to hopping exchange processes of Li ions between the tetrahedral 8a sites and the octahedral 16d sites. The smallest value of 6.6-6.9 KJ mol−1, which was derived from the temperature dependence of both the spin-lattice relaxation times T1 and the correlation times τC of Litet, reveals a dynamic process for the Litet ions inside the tetrahedral voids of the structure, probably between fourfold 32e split sites around the tetrahedral 8a site.  相似文献   

6.
Substitution of Li+ into Co3O4 and ZnCo2O4 gives rise to the solid solution series LixM1?xCo2O4 (M = Co2+ or Zn2+) having the spinel structure upto x = 0.4. X-Ray diffraction intensities show that the spinel solid solutions are likely to have the following cation distributions: (Co2+)t[Li+xCo3+2?3xCo4+2x]0O4 and (Zn2+1?xCo2+x)t[Li+xCo3+2?3xCo4+2x]0O4. Electrical resistivity and Seebeck coefficient data indicate that the electron transport in these systems occurs by a small-polaron hopping mechanism.  相似文献   

7.
LiMnC2O4(Ac) precursor in which Li+ and Mn2+ were amalgamated in one molecule was prepared by solid-state reaction at room-temperature using manganese acetate, lithium hydroxide and oxalic acid as raw materials. By thermo-decomposition of LiMnC2O4(Ac) at various temperatures, a series of Li1+y[Mn2−xLix]16dO4 spinels were prepared with Li2MnO3 as impurities. The structure and phase transition of these spinels were investigated by XRD, TG/DTA, average oxidation state of Mn and cyclic voltammeric techniques. Results revealed that the Li-Mn-O spinels with high Li/Mn ratio were unstable at high temperature, and the phase transition was associated with the transfer of Li+ from octahedral 16c sites to 16d sites. With the sintering temperature increasing from 450 to 850 °C, the phase structure varied from lithiated-spinel Li2Mn2O4 to Li4Mn5O12-like to LiMn2O4-like and finally to rock-salt LiMnO2-like. A way of determining x with average oxidation state of Mn and the content of Li2MnO3 was also demonstrated.  相似文献   

8.
The ac electrical response of cell systems composed of single crystals of the concentrated solid solutions M1?x?yUxCeyF2+2x+y (M = Ca, Sr, Ba and 2.7 < 2x + y < 26.5 m/o), and ionically blocking electrodes has been studied as a function of frequency and temperature. At elevated temperatures the crystals react with traces of oxygen or water vapor. Complex admittance analysis reveals the formation of low-conducting surface layers, contrary to diluted solid solutions which under similar conditions react to form high-conducting surface layers (2). The activation enthalpy for the layer conductivity is substantially larger than that for the bulk conductivity, and equals that for interstitial fluoride ion motion in dilute solid solutions. A mechanism of charge compensation in the layers is presented. After reaction the solid solutions based on CaF2 show also a surface electronic conductivity. Scanning electron micrographs clearly reveal the surface degradation.  相似文献   

9.
The structure of Li4?2xSi1?xSxO4 (x ≈ 0.32) has been determined from neutron powder diffraction studies at room temperature, 350, and 700°C. This compound, which is a member of the series of ionic-conducting solid solutions formed between Li4SiO4 and Li2SO4, is isostructural with Li3PO4. The space group is Pmnb, with a = 6.1701(1), b = 10.6550(2), c = 5.0175(1)Å at room temperature. The distribution of lithium ions suggests the occurrence of a defect cluster in which the inclusion of an interstitial lithium ion causes displacements of the adjacent lithium ions of the normal Li3PO4 structure. There appears to be little variation of the structure with temperature.  相似文献   

10.
Although both end members in the (1−x)Ba(Li1/4Nb3/4)O3-xBa(Li2/5W3/5)O3 (BLNW) system adopt a hexagonal perovskite structure, B-site ordered cubic perovskites are formed for the majority of their solid solutions (0.238?x?0.833). Within this range, single-phase 1:2 order (, , ) is stabilized for 0.238?x?0.385. In contrast to all known A(B1/3IB2/3II)O3 perovskites, the 1:2 ordered BLNW solid solutions do not include any composition with a 1:2 cation distribution and the structure exhibits extensive non-stoichiometry. Structure refinements support a model where Li and W occupy different positions and Nb is distributed on both sites, i.e. Ba[(Li3/4+y/2Nb1/4−y/2)1/3(Nb1−yWy)2/3]O3 (y=0.21-0.35, where y=0.9x). The stabilization of the non-stoichiometric order arises from the large charge/size site differences; the loss of 1:2 order for W-rich compositions is related to local charge imbalances on the A-site sub-lattice. The range of single-phase 1:1 order is confined to x=0.833, (Ba(Li3/4Nb1/4)1/2(W)1/2)O3), where the site charge/size difference is maximized and the on-site mismatches are minimized. The microwave dielectric loss properties of the ordered BLNW solid solutions are significantly inferior as compared to their stoichiometric counterparts.  相似文献   

11.
A two-step topotactic route is used to construct lithium halide layers within a perovskite host. Initially RbLaNb2O7 is converted to (CuCl)LaNb2O7 by ion exchange and then reductive intercalation with n-butyllithium is used to form (LixCl)LaNb2O7. The copper metal byproduct from the reduction step is removed by treatment with iodine. Rietveld refinement of neutron powder diffraction data revealed that an alkali-halide double layer with LiO2Cl2 tetrahedra forms between the perovskite slabs. Compositional studies indicate that the range for x in (LixCl)LaNb2O7 is 2?x<4, which appears consistent with the neutron data where only one lithium site was found in the structure.  相似文献   

12.
Lithium substituted Li1+xMn2−xO4 spinel samples in the entire solid solution range (0?x?1/3) were synthesized by solid-state reaction. The samples with x<0.25 are stoichiometric and those with x?0.25 are oxygen deficient. High-temperature oxide melt solution calorimetry in molten 3Na2O·4MoO3 at 974 K was performed to determine their enthalpies of formation from constituent binary oxides at 298 K. The cubic lattice parameter was determined from least-squares fitting of powder XRD data. The variations of the enthalpy of formation from oxides and the lattice parameter with x follow similar trends. The enthalpy of formation from oxides becomes more exothermic with x for stoichiometric compounds (x<0.25) and deviates endothermically from this trend for oxygen-deficient samples (x?0.25). This energetic trend is related to two competing substitution mechanisms of lithium for manganese (oxidation of Mn3+ to Mn4+ versus formation of oxygen vacancies). For stoichiometric spinels, the oxidation of Mn3+ to Mn4+ is dominant, whereas for oxygen-deficient compounds both mechanisms are operative. The endothermic deviation is ascribed to the large endothermic enthalpy of reduction.  相似文献   

13.
Phase equilibria in the CsBr-Cs2ZnBr4-Cs2CdBr4-Cs2HgBr4 quaternary system were studied by differential thermal analysis. The CsBr-Cs2ZnBr4-Cs2HgBr4 ternary system has a ternary eutectic, E 1, at ~83 mol % Cs2HgBr4, 2 mol % Cs2ZnBr4, and 15 mol % CsBr with a melting point of ~415°C. The CsBr-Cs2ZnBr4-Cs2CdBr4 ternary system has a ternary eutectic, E 2, at ~53.5 mol % Cs2CdBr4, 1.5 mol % Cs2ZnBr4, and 45 mol % CsBr with a melting point of ~450°C. The polythermal section Cs3ZnBr5-Cs2CdBr4-Cs2HgBr4 in the CsBr-Cs2ZnBr4-Cs2CdBr4-Cs2HgBr4 quaternary system was constructed and investigated. This section is a quasi-ternary system and is characterized by the formation of regions of solid solutions Cs2Zn x Cd y Hg1?x ? y Br4 and solid solutions based on Cs3ZnBr5. The liquidus surface of the quaternary system consists of three fields of primary crystallization of cesium bromide, a solid solution Cs2Zn x Cd y Hg1?x ? y Br4, and a solid solution based on Cs3ZnBr5.  相似文献   

14.
固体电解质Li9-nxMn+xN2Cl3(M=Na、Mg、Al)的合成及表征   总被引:3,自引:0,他引:3  
高温固相反应合成了固体电解质Li9-nxM^n+xN2Cl3(M=Na、Mg、Al)。利用粉末X射线衍射测定样品结构,测定了离子电导率,分解电压和电子电导。得出掺杂可以提高快离子快离子导体材料Li9N2Cl3中的Li^+离子可以很大程度的提高其电导率。  相似文献   

15.
Lithium manganese titanium spinels, LiMn2−yTiyO4, (0.2≤y≤1.5) have been synthesized by solid-state reaction between TiO2 (anatase), Li2CO3 and MnCO3. Li+ was leached from the powdered reaction products by treatment in excess of 0.2 N HCl at 85 °C for 6 h, under reflux. The elemental composition of the acidic solution and solid residues of leaching has been determined by complexometric titration, atomic absorption spectroscopy and X-ray fluorescence analysis. Powder X-ray diffraction was used for structural characterization of the crystalline fraction of the solid residues. It has been found that the amount of Li+ leached from LiMn2−yTiyO4 decreases monotonically with increasing y in the interval 0.2≤y≤1.0 and abruptly drops to negligibly small values for y>1.0. The content of Mn and Li in the liquid phase and of Mn and Ti in the solid (amorphous plus crystalline) residue, were related to the composition and cation distribution in the pristine compounds. A new formal chemical equation describing the process of leaching and a mechanism of the structural transformation undergone by the initial solids as a result of Li+ removal has been proposed.  相似文献   

16.
The solid-state equilibria of the chromium thiospinel solid solutions MxM1?xCr2S4 (M,M′ = Mn, Co, Zn, Cd), with excess binary sulfides MS and M′S or M1?xMxS mixed crystals, are investigated. At 600°C the following equilibrium compositions are found: Mn0.38Co0.62Cr2S4, Mn0.36Zn0.64Cr2S4, Mn0.64Cd0.36Cr2S4, Co0.33Zn0.67Cr2S4, Co0.68Cd0.32Cr2S4, and Zn0.75Cd0.25Cr2S4. The results show that metals with small crystal radii and high tetrahedral site preference energy are preferentially incorporated into the tetrahedral sites of chromium thiospinels. With increasing temperature the composition of the quaternary spinels approach M0.5M0.5Cr2S4. From the temperature dependence of the equilibrium constants the reaction enthalpies could be determined. The binary sulfides MS and M′S are incompletely miscible excepting the system ZnSCdS. At 600°C the following miscibility gaps are found: MnyZn1?yS: y = 0.43 – ≈ 1.0, MnyCd1?yS: y = 0.50 – >0.9, CoyMn1?yS: y = <0.1 – ≈ 1.0, CoyZnt?yS: y = 0.1 – ≈ 1.0, and CoyCd1?yS: y = 0.1 – ≈ 1.0. With increasing temperature the miscibility gaps, especially of the systems with CoS, get smaller. The spinel solid solutions and the ZnSCdS mixed crystals obey Vegard's rule.  相似文献   

17.
Orthorhombic lithium zinc molybdate was first chosen and explored as a candidate for double beta decay experiments with 100Mo. The phase equilibria in the system Li2MoO4-ZnMoO4 were reinvestigated, the intermediate compound Li2Zn2(MoO4)3 of the α-Cu3Fe4(VO4)6 (lyonsite) type was found to be nonstoichiometric: Li2−2xZn2+x(MoO4)3 (0≤x≤0.28) at 600 °C. The eutectic point corresponds to 650 °C and 23 mol% ZnMoO4, the peritectic point is at 885 °C and 67 mol% ZnMoO4. Single crystals of the compound were prepared by spontaneous crystallization from the melts and fluxes. In the structures of four Li2−2xZn2+x(MoO4)3 crystals (x=0; 0.03; 0.21; 0.23), the cationic sites in the face-shared octahedral columns were found to be partially filled and responsible for the compound nonstoichiometry. It was first showed that with increasing the x value and the number of vacancies in M3 site, the average M3-O distance grows and the lithium content in this site decreases almost linearly. Using the low-thermal-gradient Czochralski technique, optically homogeneous large crystals of lithium zinc molybdate were grown and their optical, luminescent and scintillating properties were explored.  相似文献   

18.
The crystal structure of the promising optical materials Ln2M2+Ge4O12, where Ln=rare-earth element or Y; M=Ca, Mn, Zn and their solid solutions has been studied in detail. The tendency of rare-earth elements to occupy six- or eight-coordinated sites upon iso- and heterovalent substitution has been studied for the Y2−xErxCaGe4O12 (x=0-2), Y2−2xCexCa1+xGe4O12 (x=0-1), Y2Ca1−xMnxGe4O12 (x=0-1) and Y2−xPrxMnGe4O12 (x=0-0.5) solid solutions. A complex heterovalent state of Eu and Mn in Eu2MnGe4O12 has been found.  相似文献   

19.
The phase diagrams of the quaternary systems MSCr2S3In2S3, with M = Co, Cd, and Hg, were studied with the help of X-ray powder photographs of quenched samples, high-temperature X-ray diffraction patterns, DTA and TG measurements, and far-infrared spectra. Because indium sulfides do react with silica tubes, alumina crucibles must be used for annealing the samples. Complete series of mixed crystals are formed among the spinel-type compounds MCr2S4, MIn2S4 (M = Cd, Hg), and In2S3. HgIn2S4 is decomposed at temperatures above 300°C. In the sections CoCr2S4CoIn2S4 and CoCr2S4In2S3 relatively large miscibility gaps exist due to the change from normal to inverse spinel structure. But the interchangeability of both systems increases with increasing temperature, and at temperatures above 1000°C, complete series of solid solutions are formed, which can be quenched to ambient temperature. Superstructure ordering like that of ordered α-In2S3 has been found in the In-rich region of the MIn2S4In2S3 solid solutions. The unit cell dimensions of all stoichiometric and phase boundary compounds, e.g., Cd1.15In1.9S4, including the chromium spinels MCr2S4 (M = Mn, Zn) and ZnCr2Se4, are given and discussed in terms of possible deviations from stoichiometry.  相似文献   

20.
Six binary systems were studied using DTA with supplementary XRD. In Li2SO4?MSO4 systems (M=Mg, Co, Ni), a primary solid solution with α-Li2SO4 structure (high-temperature form) and an incongruent melting compound Li2My(SO4)1+y exist:y=2 with Mg andy=1 with Co and Ni. In Li2SO4?Li3XO4 systems (X=P, V), which are very different from one another, only primary solid solutions exist. In the Li2SO4?Li2B4O7 system there is neither a solid solution nor an intermediate compound. Comparisons with previous investigations are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号