首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
任洪亮  丁攀峰  李小燕 《物理学报》2012,61(21):155-159
光镊利用光学梯度力捕获和操控微小粒子,已经成为深入研究生物分子间相互作用等微观机制的独特技术.光镊光束操控系统一般由扩束输入镜、扩束输出镜、调焦透镜、耦合透镜和压电转镜等光学元器件组成,以保证物镜后瞳充满的前提下实现光镊阱位操控.光镊阱位的三维精确操控是实现光镊位钳和力钳模式的基本条件.本文根据矩阵光学,对基于无穷远校正显微镜的光镊操控光路进行计算,分析扩束输入镜、调焦透镜和物镜轴向位置调整,以及压电转镜、调焦透镜和耦合透镜安装位置误差对光镊径向阱位操控精度的影响,得到了物镜高度调整基本不会影响光镊径向位置操控,压电转镜和调焦透镜的安装位置误差对光镊径向阱位操控精度影响最大等结论,提出了能够实现径向阱位精确操控的轴向阱位动态操控范围,为光镊设计和操控提供理论和实验指导.  相似文献   

2.
面向生物粒子操控方法的研究,在生物医学和生命科学等领域具有重要意义。光镊操控具有无接触与高精度的特点,已被广泛应用于多个领域的研究中。然而,传统光镊的光热效应以及衍射极限都制约着光镊在生物医学领域的更广泛应用和发展。近十年来,研究者们将光热效应化劣势为优势,利用光与热的耦合效应实现了多种粒子的精确捕获及操控,即光致温度场光镊(OTFT)。由于此种新型光镊对光能的利用率极高,能量密度低于传统光镊近3个数量级,并可实现颗粒的大范围操控,极大地拓展了光镊可操控粒子的种类,已经成为纳米技术以及生命科学领域的重要研究工具。温度场光镊仍面临诸多问题,例如对于颗粒界面调控的依赖性以及三维捕获受限等,尤其是在生物光子学的研究中,还需要进一步发展和优化。本文对光致温度场光镊操控基本原理及其在生物医学中的应用两个方面进行了系统阐述,并对其今后的发展与挑战进行了展望。  相似文献   

3.
光镊利用强会聚激光对微粒产生的梯度力来捕获微粒,可以进行无损、远程操控,同时具有皮牛精度的测力特性,已经成为物理学、生命科学和胶体化学等研究领域中不可缺少的研究工具。光镊效应可以表现微小的光子动量和角动量,是物理学的重要教学工具。本文根据高斯光束传播和变换规律,设计具有稳定捕获性能的最小化光镊,并给出了典型参数。光镊系统由捕获激光、光束耦合系统、倒置生物显微镜和大数值孔径物镜组成,成像系统由物镜、摄影目镜和CCD相机组成。本光镊系统具有紧凑特性,同时通过保持物镜后瞳充满度来实现稳定捕获。在该最小光镊系统上,可以根据用户需求增加光镊阱位操控系统、刚度调节系统和其他辅助设备以满足不同操控要求,可以很好地满足科研和教学需求。  相似文献   

4.
光镊系统的组建及光阱效应的观察   总被引:1,自引:0,他引:1  
光镊是美国科学家Arthur Ashkin于1986年发明的,现被用来操控微小粒子和作为微小力的传感器.随着光镊技术的不断发展,光镊在生物大分子的操控和生物大分子生命过程中动力学研究方面发挥着巨大作用.本文介绍了光镊的工作原理,以及如何利用实验室现有条件,以较低成本搭建了一个简化的光镊系统,并观察了光镊对几种微小粒子的捕捉情况,证实了光阱有一定的作用范围,且其捕获能力随微粒尺寸增大而减小.  相似文献   

5.
以超连续谱激光器作为捕获光源,首次提出并搭建了超连续谱双光束光纤光阱实验系统,实现了聚苯乙烯微球的捕获和操控。通过改变光纤端面间隔和调整捕获光功率的方式精确控制微球的位置,采用CCD图像分析方法实现了微球位置的精确测量。对微球受限布朗运动下的位置变化进行傅里叶变换,计算得到功率谱,与理论功率谱函数拟合后求出了其光阱刚度。结果表明,捕获光束的功率为28 mW时,光阱刚度达到1.3×10-6N/m,高于相同实验条件下单波长光纤光阱的刚度。与传统采用单色光作为捕获光源的光镊系统不同,超连续谱双光束光阱系统利用其宽谱优势,通过研究被捕获微粒的散射光谱信息可获取其尺寸、折射率等物理特征参数。  相似文献   

6.
本文分析了不同微结构、电池厚度对太阳能电池光损失的影响,提出了一种新的电池陷光结构。运用时域有限差分法(FDTD)仿真了该类太阳能电池陷光结构中光传输过程,获得了不同波源入射下陷光结构电池的储能特性和光捕获特性,优化设计了最佳陷光结构并分析了其光捕获性能。  相似文献   

7.
任洪亮 《物理学报》2013,62(10):100701-100701
光镊是研究单分子生物物理特性的独特工具, 因而光镊设备的研发是一个极为重要的课题. 本文根据矩阵光学, 对基于有限远共轭显微镜的光镊操控光路进行计算, 得出了阱位径向操控和轴向操控方程, 并分析了光束调控系统、 共焦系统后置透镜和耦合透镜安装位置误差及物镜轴向位置调整对光镊阱位径向及轴向操控精度的影响. 计算结果显示, 当物镜初级像面和耦合透镜像方焦面完全重合, 光束调控系统和耦合透镜的距离误差对阱位径向和轴向操控精度没有影响. 光镊系统元器件定位不准时, 基于无限远共轭显微镜光镊的阱位径向操控误差和轴向操控误差都小于基于有限远共轭显微镜光镊的阱位径向操控误差和轴向操控误差. 当光镊耦合透镜定位误差控制在小于10 mm时, 基于有限远共轭显微镜光镊的径向和轴向操控误差分别小于5.9%和11.4%, 有限远共轭显微镜仍然存在改造为光镊的价值.本文理论为基于有限远共轭显微镜的光镊设计、改造和操控提供理论和实验指导. 关键词: 光镊 光学设计 矩阵 误差  相似文献   

8.
高洁  杭超 《物理学报》2022,(13):128-139
基于里德伯-电磁感应透明系统实现了具有宇称-时间对称的电磁感应诱导光栅,并研究了系统中探测光场在到达光栅前形成孤子的过程以及经过光栅时引起的偏折现象.发现由于里德伯-电磁感应透明系统具有很强的非线性光学效应,因此只需要很少的输入探测光能量就能形成稳定的光孤子.此外还发现,通过改变电磁感应诱导光栅的增益/损耗系数、光栅周期、以及体系的克尔非线性非局域度都可以有效地改变探测光孤子的偏折程度和状态,实现对弱光孤子偏折的主动操控.本文的研究结果可为未来利用宇称-时间对称的电磁感应诱导光栅实现全光控制和光信息处理等相关应用提供一定的理论依据.  相似文献   

9.
王玥  梁言生  严绍辉  曹志良  蔡亚楠  张艳  姚保利  雷铭 《物理学报》2018,67(13):138701-138701
传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)GerchbergSaxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.  相似文献   

10.
利用波长为800nm的单光束飞秒激光对水溶液中的金纳米棒颗粒进行了稳定地二维光捕获.通过测量金纳米棒的散射谱研究了光阱中金纳米棒之间的耦合相互作用.比较光阱中只有单个金纳米棒被捕获和两个金纳米棒同时被捕获时的散射谱.结果表明,当两个金纳米棒同时被光阱捕获时,金纳米棒之间相互排斥,存在一定的间隔,该间隔使得两个金纳米棒之间没有发生表面等离子耦合相互作用.该实验结果为金纳米棒的光操纵及其在生物分子探测等领域的研究提供技术指导及实验参考.  相似文献   

11.
处于倏逝场中的微小粒子会受到辐射压力的作用而朝着倏逝场的传播方向运动,基于此原理的微小粒子驱动技术可用于介质颗粒、胶体颗粒、生物细胞等微小粒子的捕获和驱动.由于倏逝场光学微操作系统不会受到物镜焦深和激光光斑尺寸的限制,因此它比自由空间系统的优越性更强,而波导形成的光学力可以应用于长距离驱动,其仅仅受限于系统的散射和吸收...  相似文献   

12.
Optical trapping and magnetic trapping are common micromanipulation techniques for controlling colloids including micro‐ and nanoparticles. Combining these two manipulation strategies allows a larger range of applied forces and decoupled control of rotation and translation; each of which are beneficial properties for many applications including force spectroscopy and advanced manufacturing. However, optical trapping and magnetic trapping have conflicting material requirements inhibiting the combination of these methodologies. In this paper, anisotropic microscaled particles capable of being simultaneously controlled by optical and magnetic trapping are synthesized using a glancing angle deposition (GLAD) technique. The anisotropic alignment of dielectric and ferromagnetic materials limits the optical scattering from the metallic components which typically prevents stable optical trapping in three dimensions. Compared to the current state of the art, the benefits of this approach are twofold. First, the composite structure allows larger volumes of ferromagnetic material so that larger magnetic moments may be applied without inhibiting the stability of optical trapping. Second, the robustness of the synthesis process is greatly improved. The dual optical and magnetic functionality of the synthesized colloids is demonstrated by simultaneously optically translating and magnetically rotating a magnetic GLAD particle using a custom designed optomagnetic trapping system.  相似文献   

13.
Since the introduction of computer-controlled spatial light modulators (SLMs), holographic optical tweezers have become an important tool for dynamic parallel optical manipulation. In this paper we clarify the usefulness of a new configuration for optical trapping that creates light patterns using the combination of a diffractive optical element (DOE) and an SLM. This configuration not only enables the use of the higher part of the SLM’s diffraction efficiency curve, because a simple hologram can be chosen for the SLM, but also achieves three-dimensional dynamic optical manipulation over a large spatial range. By switching blaze-like holograms displayed on the SLM, we demonstrated simultaneous transportation of three 6-μm-diameter polystyrene beads over a range of 90 μm in the vertical direction and 37.5 μm in the horizontal direction. Compared with the same manipulation executed using only the SLM, the range of this method is extended four-fold in the vertical direction and three-fold in the horizontal direction.  相似文献   

14.
王婧  何军  张天才  王军民 《物理》2008,37(2):103-110
文章综述了基于原子冷却与俘获的单原子制备及其光学操控的基本实验原理及实验进展,并介绍了单原子制备及光学操控在量子寄存器、单光子源、原子-光子纠缠等方面的应用,简述了文章作者所在研究小组在单原子制备和光学操控方面的实验进展.  相似文献   

15.
Optical tweezers, a simple and robust implementation of optical micromanipulation technologies, have become a standard tool in biological, medical and physics research laboratories. Recently, with the utilization of holographic beam shaping techniques, more sophisticated trapping configurations have been realized to overcome current challenges in applications. Holographically generated higher‐order light modes, for example, can induce highly structured and ordered three‐dimensional optical potential landscapes with promising applications in optically guided assembly, transfer of orbital angular momentum, or acceleration of particles along defined trajectories. The non‐diffracting property of particular light modes enables the optical manipulation in multiple planes or the creation of axially extended particle structures. Alongside with these concepts which rely on direct interaction of the light field with particles, two promising adjacent approaches tackle fundamental limitations by utilizing non‐optical forces which are, however, induced by optical light fields. Optoelectronic tweezers take advantage of dielectrophoretic forces for adaptive and flexible, massively parallel trapping. Photophoretic trapping makes use of thermal forces and by this means is perfectly suited for trapping absorbing particles. Hence the possibility to tailor light fields holographically, combined with the complementary dielectrophoretic and photophoretic trapping provides a holistic approach to the majority of optical micromanipulation scenarios.  相似文献   

16.
Recently, interest in nano-manipulation using the evanescent wave generated by nano-objects has been growing, but the analyses of manipulation flexibility and performance haven't been solved. In this paper the near-field optical trap utilizing a tapered metalized probe used in NSOM is described in detail. By employing a generalization of the conservation law for momentum using three-dimensional FDTD method, rigorous calculations of field distributions and trapping forces in near-field region are conducted. Calculations show that the particle with radius larger than the aperture is pushed away from the metal-coated fiber probe, while it tends to be trapped in larger effective region as its radius becoming smaller. The particle that is placed very near the aperture and around two field peaks intends to be dragged to the aperture edge, while the particle placed at other position tends to be attracted to the center surface of the probe tip. Furthermore, a preferable method using the combination of the near-field optical fiber probe and the AFM metallic probe is proposed, for more efficient non-contact manipulation and better observation of one single nano-particle. The analyses of trapping potential along the probe axis and the near-field distribution show the possibility of particle trapping.  相似文献   

17.
Optical tweezers with a low numerical aperture microscope objective is used to manipulate the microspheres at the water-air interface. In this letter, we determine the optimal optical trap for the lateral manipulation of microspheres at a water-air interface. The experimental results show that the trapping force is influenced by the expansion of the trapping beam at the back aperture of the objective. The optimal filling ratio of 0.65 is suggested for lateral optical manipulation at the water-air interface. The lateral trapping forces at the water-air interface are theoretically investigated with the ray-optics model. The numerical results show that the lateral trapping forces can be changed by shrinking the diameter of the trapping laser beam. The numerical results are in accordance with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号