首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

2.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

3.
杜柯  周伟瑛  胡国荣  彭忠东  蒋庆来 《化学学报》2010,68(14):1391-1398
以LiOH•H2O, Ni2O3, Co3O4和MnO2为原料, 经过机械活化后在空气气氛下经高温烧结, 合成了锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征. 结果表明, 900 ℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料, 并具有良好的电化学性能, 在室温下以60 mA/g的电流充放电, 首次放电比容量可达到248.2 mAh/g, 循环50次后放电比容量为239.4 mAh/g, 容量保持率为96.45%. 测试了该材料的高低温循环性能.  相似文献   

4.
李林  王昊  郭志豪  彭工厂 《合成化学》2022,30(9):704-708
本研究以硫酸锰、硫酸钻、硫酸镍、碳酸钠和氟化铵为原料,通过共沉淀法结合高温煅烧法合成氟掺杂富锂锰基正极材料 Li1.2 Mn0.54 Ni0.13 Co0.13O1.92 F0.08 。通过扫描电子显微镜(SEM)对样品形貌进行观察,利用x-射线衍射(XRD)技术表征晶体结构,利用x-射线能谱仪(EDS)对样品元素分布进行测试,对材料进行恒电流充放电并研究其电化学性能。结果表明:氟掺杂后的富锂锰基正极材料微观形貌没有发生明显变化并保持层状结构;氟原位掺杂的样品在电流密度为1C时循环65 圈后,放电比容量为179 mAh/g,容量保持率为91.89%,高于未掺杂的样品87.5% ,有效改善了材料的循环性能。  相似文献   

5.
磷酸锂原位包覆富锂锰基锂离子电池正极材料   总被引:1,自引:0,他引:1  
本工作通过“碳酸盐共沉淀-沉淀转化-固相反应”方法,实现磷酸锂原位包覆和改性富锂锰基锂离子电池正极材料Li1.2Mn0.54Co0.13Ni0.13O2,研究了磷酸锂包覆层的形成过程及其对电化学性能的影响.结果显示,碳酸盐前驱体经沉淀转化反应原位形成磷酸镍包覆层,与锂源混合煅烧,最终转化为厚度小于30 nm的磷酸锂包覆层.该材料组装的半电池在125 mAh·g-1电流密度下循环175圈后容量达191.1 mAh·g-1,容量保持率为81.8%,平均每圈电压衰减仅为1.09 mV.磷酸锂包覆层缓解了材料表面与电解液之间的副反应,抑制了不可逆相变和过渡金属溶出,同时磷酸锂作为锂离子导体促进锂离子传输.本工作表明沉淀转化法原位包覆磷酸锂是提升富锂锰基正极材料性能的有效途径.  相似文献   

6.
本研究采用PO43-掺杂和AlF3包覆的协同改性策略制备了P-LNCM@AlF3正极材料(P=PO43-,LNCM=Li1.2Ni0.13Co0.13Mn0.54O2),提高了LNCM的结构稳定性以及抑制了界面副反应。其中,大四面体的PO43-聚阴离子掺杂在晶格中抑制了过渡金属离子的迁移,降低体积变化,从而稳定了晶体结构,而且PO43-掺杂能够扩大锂层间距,促进Li+的扩散,从而提升材料的倍率性能。此外,AlF3包覆层能抑制材料与电解液的副反应从而提升界面稳定性。基于以上优势,P-LNCM@AlF3正极表现出了优异的电化学性能。在1C电流密度下表现出了179.2 mAh·g-1  相似文献   

7.
随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.  相似文献   

8.
以金属醋酸盐为原料, 尿素为沉淀剂, 采用水热法辅助高温煅烧制备了三维微纳结构富锂锰基层状材料Li1.2Mn0.54Ni0.13Co0.13O2. 通过调整反应溶剂实现了镍钴锰碳酸盐前驱体向球状和纺锤体状的导向性生长. 其中纺锤体状富锂材料在0.1C倍率下首次放电容量接近300 mA·h/g, 在5C大倍率下放电容量能够达到92 mA·h/g, 在0.5C倍率下循环70周容量保留率能够达到85%.  相似文献   

9.
采用离子交换加固相烧结法制备出富锂锰基正极材料Li1.2Mn0.54Co0.13Ni0.13NaxO2,利用球差校正扫描透射电子显微镜(STEM)、X射线能谱(EDS)、电子能量损失谱(EELS)等分析手段对材料表面结构与成分展开表征。结果表明:镍(Ni)在样品表面存在选择性富集(垂直于锂扩散通道的表面,如(200)面),倾向扩散进入锂离子层,并导致表面出现层状结构到岩盐相(rocksalt, Fm3m)结构转变;而钴(Co)在所观察的(001)、(200)表面均存在不同程度的富集,且集中在过渡金属层。进一步研究发现,表面钴(Co)富集不利于层状结构的稳定,时效后样品的(001)面观察到明显的表面重构,存在数量较多的过渡金属(TM)-锂(Li)反位缺陷与岩盐相结构区域。  相似文献   

10.
通过添加烷基季铵盐类表面活性剂来调控材料形貌和粒径的改性方法,在LiNi0.8Co0.1Mn0.1O2前驱体合成过程中添加表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基三甲基溴化铵(CTAB),利用尿素作为配合剂和沉淀剂,采用溶剂热法合成LiNi0.8Co0.1Mn0.1O2前驱体。最后,高温混锂煅烧合成椭球形的空心多孔材料。相比于不添加表面活性剂的样本,改性的材料有着更小的粒径和更加规整的形貌。电化学测试表明,添加DTAB和CTAB之后,首次充电容量分别达到223与251 mAh·g-1(0.1C)。其中,添加CTAB的样品首次放电容量达到216 mAh·g-1(0.1C),100次循环后容量保持率为85.1%,高于LiNi0.8Co0.1Mn0.1O2的81.7%(0.1C)。表面活性剂的改性显著提高了材料的电化学性能,为高镍三元正极材料的改性提供了一种新的思路。  相似文献   

11.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

12.
将氢氧化物共沉淀法制备的(Ni1/3Co1/3Mn1/3)(OH)2在500℃热处理5 h得到具有尖晶石结构、纳米尺寸的氧化物M3O4(M=Ni1/3Co1/3Mn1/3).将其与LiOH及不同量的纳米MgO混合均匀,并在850℃热处理24 h制备了Li(Ni1/3Co1/3Mn1/3)1/xMgxO2(x=0,0.01,0.02,0.03,0.04,0.05)正极村料.随着Mg掺杂量的增大,正极材料的晶胞参数增大;少量的Mg掺杂增大了锂离子的扩散系数,而过度掺杂却使锂离子扩散系数有所降低,其中Li(Ni1/3Co1/3Mn1/3)0.98Mg0.02O2的锂离子扩散系数最大,其脱出和嵌入扩散系数分别为DLi-dein=29.20×10-11cm2·S-1和DLi-in=4.760×10-11cm2·s-1;其以3C倍率充放电的平均放电比容量为139.3 mAh·g-1,比未掺杂的原粉约高9.5 mAh·g-1;另外其循环性能也得到了大幅度改善.  相似文献   

13.
侯孟炎  王珂  董晓丽  夏永姚 《电化学》2015,21(3):195-200
应用共沉淀结合固相烧结合成了富锂层状氧化物(Li-rich layered oxide,LLO)Li1.2Ni0.13Co0.13Mn0.54O2. 对制备的富锂材料用氧化石墨烯(Graphene Oxide,GO)包覆后,再经300 oC空气中煅烧,制备了石墨烯(Graphene,Gra)卷绕包覆的复合材料(LLO/Gra). 使用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)及电化学方法表征所得样品. 结果表明,富锂层状氧化物均匀地卷绕在石墨烯中. 与原始富锂材料相比,石墨烯包覆后的复合材料表现出更加优异的电化学性能. 尤其是石墨烯卷绕可以改善富锂材料的导电性,提高材料的放电倍率性能,在2.0至4.8 V电压范围内,0.1C(20 mA·g-1)电流充放电下,容量达270 mAh·g-1,1C倍率下复合物的放电容量接近200 mAh·g-1,比原始LLO材料170 mAh·g-1提高了15%.  相似文献   

14.
李钊  王忠  班丽卿  王建涛  卢世刚 《化学学报》2019,77(11):1115-1128
随着电动汽车和储能电站等电力设备的快速发展,对高能量密度的锂离子电池的需求日益增加.高比容量(>250 mAh·g-1)的富锂锰基正极材料,有望成为锂离子电池实现高比能量(>350 Wh·kg-1)的关键正极材料.富锂锰基正极材料的Li2MnO3相和晶格氧参与电化学反应使其拥有了高容量,但这也导致表面结构和成分容易发生变化,进而造成富锂锰基正极材料存在着诸如首次库伦效率低、倍率性能差和循环后电压和容量衰减严重等问题.因此,本文综述了富锂锰基正极材料的表面包覆、表面掺杂和表面化学处理三种表面改性方法,并进一步讨论了三种表面改性方法对材料性能提升的机制机理和优缺点.在此基础上,介绍了近些年基于多方法的表面联合改性工作.通过对富锂锰基正极材料进行表面联合改性,不仅可以改善其结构稳定性和抑制电极/电解液界面副反应,而且可以缓解其在循环过程中不断发生的结构转变和晶格氧的析出问题.最后,对富锂锰基正极材料表面改性研究方向进行了总结和展望.  相似文献   

15.
锂离子电池(LIB)正极材料比容量及结构稳定性的提高是提升电池整体性能的重要因素. 本工作选取层状无钴正极材料Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2 (LNAFMO)为研究对象, 使用GGA (generalized gradient approximation)+U (Hubbard U value)方法研究了体系在充电时几何和电子结构变化、氧释放焓、脱锂形成能和脱锂电压. 研究结果表明, 充电时LNAFMO体系首先Ni氧化, 然后Fe氧化, 最后O氧化. 与未掺杂Al的Li(Li0.17Ni0.17Fe0.17Mn0.49)O2 (LNFMO)体系不同的是, 除具有线性Li-O-Li和Fe-O-Li构型的氧离子更容易给出电子外, 具有线性Al-O-Li构型的氧离子也参与电荷补偿, 并且氧离子具有很强的活性, 这将避免参与氧化的氧离子过分集中, 有利于结构的稳定; Al的掺杂能进一步抑制氧的释放, 这将提升体系的结构稳定性和电池循环性能. 该研究为设计一种低经济成本、循环性良好、高能量密度的锂离子电池正极材料奠定了坚实的理论依据.  相似文献   

16.
高镍三元材料作为一种锂离子电池正极材料,因其较高的放电比容量而得到科学界和工业界的广泛关注。研究表明,高镍三元材料的比容量与材料中的Ni含量呈正相关,但Ni含量的增加也会加剧循环过程中的界面副反应,材料表面释氧以及结构转变等问题。本文采用ZrO2包覆LiNi0.8Co0.1Mn0.1O2材料,利用X射线衍射证明,在高温处理下ZrO2包覆物中的Zr4+会掺杂进LiNi0.8Co0.1Mn0.1O2材料表面晶格中,使得X射线衍射谱中的(003)衍射峰左移。电化学测试证明在4.3和4.5 V的截止电压下,改性最优的材料在1C循环100周后容量保持率分别从84.89%和75.60%提高到97.61%和81.37%,同时发现循环稳定性的提升主要来自材料表面的Zr4+掺杂。X射线光电子能谱证明Zr4+表层掺杂后材料的Ni化合价由Ni3+向Ni2+转变,透射电子显微镜观察到Zr4+的表层掺杂使得材料表面的层状结构发生重构,从而稳定了材料体相结构,提高了材料整体的循环稳定性。  相似文献   

17.
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。  相似文献   

18.
采用高温固相法合成了一系列不同含量Mg掺杂的LiNi0.90Co0.05Mn0.05O2正极材料,并通过X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱等表征手段对其物相结构、颗粒形貌及电化学性能进行了研究。结果表明,掺杂Mg元素虽然会降低材料的可逆容量,但是可扩大材料晶胞体积,抑制不可逆相变,改善电极与电解液的界面稳定性,可有效提升材料的循环稳定性。其中,3%摩尔分数掺杂量的LiNi0.90Co0.05Mn0.05O2正极材料结构稳定,容量损失较少,综合性能表现较好,在0.1 C、2.8~4.3 V电压范围内,首周充放电比容量达到了197.3 mA·h/g,100周的循环保持率达到了93.6%,且5 C下放电比容量为161.1 mA·h/g。  相似文献   

19.
采用溶胶-凝胶法合成了Li1.18Ni0.15Co0.15Mn0.52O2富锂层状正极材料, 并使用聚(3-己基噻吩)对其进行了表面包覆. 采用多种光谱学和电化学手段对材料的形貌结构和电化学性能进行了分析. 结果表明, 聚(3-己基噻吩)溶液浸泡后在富锂材料表面形成厚约1.5 nm的均匀包覆层. 表面包覆后富锂层状正极材料的极化和阻抗明显减小. 在0.2C倍率下, 经过100次充放电循环后, 未包覆的富锂材料放电比容量衰减为170 mA·h/g, 而经过0.3%聚(3-己基噻吩)包覆的材料的放电比容量则保持在205 mA·h/g, 容量保持率由68%提高到82%; 10C倍率下的放电比容量由72 mA·h/g提高到116 mA·h/g.  相似文献   

20.
通过控制结晶法和浓度梯度进料的方式制备了Ni、Co和Mn三元素组分含量呈全梯度分布的类球形Ni0.7Co0.15Mn0.15(OH)2前驱体,与LiOH·H2O均匀混合并焙烧后获得LiNi0.7Co0.15Mn0.15O2正极材料,系统研究了不同焙烧温度对材料Ni、Co和Mn三元素扩散情况、晶体结构及电化学性能的影响规律。通过能谱仪(EDXS)分析不同焙烧温度下材料颗粒中Ni、Co、Mn三元素的扩散程度。研究结果表明,在800℃下焙烧得到的正极材料梯度分布特征明显且电化学性能最佳,首次放电比容量为186.1 mAh·g-1(2.8~4.3 V,0.2C),2C大倍率充放电条件下循环200次后容量保持率为90.1%。这种材料兼具高比容量及良好的循环稳定性,可以用作下一代高能量密度锂离子电池正极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号