首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
研究了脉冲宽度为25~40 ns的放电脉冲XeCl准分子激光器的工作参数。结果显示,激光器产生的脉冲能量为0.2~0.7 J,重复频率为100 Hz,表明在泵浦功率为2.8~3.3 MW/cm3时,激光器实现了2.6%的激光效率和3.8%的本征效率。  相似文献   

2.
基于国产非晶态合金磁芯,研制了采用可控硅开关、脉冲升压变压器、以及两级磁脉冲压缩网络的全固态激励电路系统,并且应用于放电体积为29 cm3,工作气压为100 kPa的电晕预电离小型TEA CO2激光器。讨论了提高系统能量传输效率和减小系统体积的设计方法,并且测量了系统的工作性能以及各部分的能量损失。实验结果表明:磁脉冲压缩网络的能量传输效率大于83%,全固态激励系统的总效率大于75%;连接激光器负载时,输出脉冲的电压峰值约为22 kV,电流上升时间约为100 ns;得到了脉冲能量109 mJ,宽度70ns的激光输出,激光器整体效率约为3.3%。在目前的封离体积与气体循环方式限制下,激光器最大重复频率约为100 Hz,而激励电路部分可以达到400 Hz的工作频率。  相似文献   

3.
不同腔结构下的声光调Q双包层光纤激光器特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
报道了半导体激光器端面抽运不同结构的声光调Q的双包层光纤激光器的脉冲输出特性.对前向、后向不同抽运方式的掺镱调Q双包层光纤激光器在输出平均功率,调Q脉冲宽度及脉冲稳定性进行了对比及讨论;其中后向抽运的光纤激光器,在10 kHz重复频率调制下,获得了斜效率为60%的平均功率输出,其脉冲宽度为52ns,单脉冲能量为0.3mJ.最后利用不同抽运方式下的速率方程,理论分析调Q脉冲的特性,分析结果与实验相符.  相似文献   

4.
外腔式SrWO4拉曼激光器的输出特性研究   总被引:1,自引:1,他引:0  
研究了外腔式SrWO4拉曼激光器在ns脉冲抽运下的输出特性。利用主动调Q的Nd∶YAG激光器产生的脉冲宽度为11.7 ns,输出能量为80 mJ的激光作为抽运源,拉曼激光谐振腔采用平平腔,实验采用4片对一阶斯托克斯脉冲和二阶斯托克斯脉冲不同反射率的输出耦合镜,测量了输出能量与抽运能量的关系,计算了转换效率与抽运能量的关系。当输出耦合镜对一阶斯托克斯脉冲的反射率为39.9%时,实验得到一阶斯托克斯脉冲的最大能量和转换效率分别为23.9 mJ和36.2%,当输出耦合镜对一阶斯托克斯脉冲和二阶斯托克斯脉冲的反射率分别为80.5%和12.4%时,得到二阶斯托克斯脉冲的最大输出能量和转换效率分别为16.4 mJ和25.4%,典型的一阶斯托克斯脉冲和二阶斯托克斯脉冲的脉冲宽度分别为6.1 ns和5.8 ns。  相似文献   

5.
报道了2μm被动调Q的Ho∶YAG激光器,该激光器采用Tm~(3+)光纤激光器作为泵浦源,使用多层石墨烯作为可饱和吸收体。在连续波激光输出模式下,当泵浦功率为4.2 W时,获得了750 mW激光输出,输出激光中心波长为2.09μm,斜率效率为29.6%。在连续波激光器谐振腔中插入多层石墨烯可饱和吸收体并调整谐振腔,获得了脉冲激光输出。当泵浦功率为4.2 W时,获得最小脉冲宽度3.1μs、重复频率66.6 kHz的脉冲激光输出,其最大平均输出功率为170 mW,斜率效率为12.6%,光束质量因子M_x~2=1.15,M_y~2=1.12。  相似文献   

6.
针对大尺度模型发动机试验台工作时间短(~百毫秒到秒量级)和激光能量要求高(>1 mJ)的特点,常规的紫外激光系统不能满足发动机燃烧流场精细化测量需求,要求用于高频平面激光诱导荧光(PLIF)测量的紫外激光系统同时满足脉冲串时间间隔短和激光输出能量高,并且系统具有高可靠性和环境适应性。设计了一套用于真实发动机地面试验台高频PLIF测量的脉冲串紫外激光系统,能够获取有效的火焰动力学数据。脉冲串紫外激光系统采用自主研制的脉冲串模式激光器泵浦染料激光器,具备能量监测、波长监测和片光分布监测等功能,可以校正激光参数对测量结果的影响。其中脉冲串模式激光器采用电光调Q、脉冲串模式和MOPA技术,使输出的泵浦激光具有高脉冲能量(~50 mJ@532 nm)、短脉冲宽度(~10.8 ns)和较高的脉冲串频率(20 Hz)。脉冲串紫外激光系统的串时间间隔为50 ms,是国外激光器脉冲串间隔时间的1/200;系统整体转换效率为6%,紫外单脉冲能量为2.95 mJ@283 nm,是国外连续脉冲激光器典型能量值的7倍。为满足发动机地面试验台测量需求,自主集成了工程可用的高可靠性移动式10 kHz PLIF...  相似文献   

7.
为解决脉冲电场测试系统中的供电问题,设计了一套激光光纤供电系统,该系统由激光器、多模光纤及光电池构成。重点研究了激光器与光纤的耦合问题,设计了透镜系统对激光器输出光束进行准直和压缩。通过MOCVD法研制了GaAs光电池,并制作了椭球形"光伏眼"来提高光电转换效率。仿真和实验表明:采用透镜耦合时,激光器与光纤的耦合效率可达80%以上,远远高于直接耦合时的16%,改进后的"光伏眼"耦合效率相比直接耦合时提高了54.5%,激光供电系统的转化效率在40%以上。该系统的研制为解决脉冲电场的供电问题提供了一种方案。  相似文献   

8.
由于寿命制约,准分子激光器使用的传统放电开关闸流管不能满足准分子激光器高重复频率长期稳定工作运行的要求。设计了基于两级磁脉冲压缩技术的全固态脉冲功率模块,使用大功率半导体开关结合脉冲升压变压器产生s级的高压脉冲,利用磁脉冲压缩技术将上升时间为s级高压脉冲压缩至满足准分子激光器使用的上升时间为0.1 s级高压脉冲。在ArF准分子激光头上放电,获得激励脉冲的上升时间约为90 ns,放电电压16.5 kV,重复频率达到1 kHz,两级磁脉冲压缩开关能量传递效率达59.1%。  相似文献   

9.
基于半导体可饱和吸收镜,实现了3μm波段被动调Q光纤激光器平均功率瓦级输出。激光器最大平均功率为1.0 W,对应的最大脉冲能量及最大峰值功率分别为6.9μJ和21.7 W。激光器斜效率为17.8%,最高重复频率为146.3kHz,最小脉宽为315.0ns。  相似文献   

10.
介绍了一台单级输出灯泵浦大功率脉冲Nd∶YAG激光器。该激光器脉宽0.1-10ms可调,频率1-1000hz可调,总注入电功率12kw。试验得到激光器参数脉冲宽度和频率协调改变,可使激光器在整个脉宽范围内都能稳定500w输出;最大单脉冲能量56J;总体电光效率4.2%;光束质量为25mm.mrad;功率稳定性±2%。  相似文献   

11.
两光子晶体光纤激光器相干锁定的实验研究   总被引:8,自引:1,他引:7  
利用自成像腔技术进行光子晶体光纤(PCF)激光器光束相干合成的实验研究,实现了两光子晶体光纤激光器的相位锁定.在不使用滤波器的情况下,实验仍能观测到清晰的下涉图样,且在高功率输出状态以及环境噪声情况下干涉图样仍可保持稳定,表明具有单模大模场特性的光子晶体光纤在实现光束相干合成方面比传统的双包层光纤(DCF)有明显的优越性.实验还表明耦合输出镜的反射率对相干输出功率有一定影响,当反射镜的反射率分别为5%,10%和15%时,两台激光器相干输出斜率效率分别为63.8%,61.6%和60.2%.在抽运功率为150 W和耦合输出镜的反射率为5%时,获得95.8 W的最大相干功率输出,相干功率合成效率为90.2%.实验中无任何热光效应产生,有望利用该方法获得更高的相干输出功率.  相似文献   

12.
赵建川  郭汝海  孙涛 《中国光学》2013,6(2):151-155
舰载激光武器作为常规舰载武器的有益补充,已经受到世界各国的普遍关注。本文介绍了舰载激光武器的发展历程,系统阐述了舰载激光武器系统的组成及功能,并分析了它们的主要技术特点及关键技术。最后,论述了舰载激光武器的发展动向,指出自由电子激光器和光纤激光器是未来舰载激光武器的发展重点,而低能、小体积重量的激光器也会逐步用于舰载激光武器,未来舰载激光武器会向小型化、高效率方向发展。  相似文献   

13.
廖常俊 《光子学报》1991,20(3):253-257
有必要为评定孤子激光器引进一个质量指标:孤子效率。因此,孤子激光器总体效率的计算也应作相应的变化。高效率的孤子激光器所产生的高质量光孤子能为长途光通信准备良好的初条件。为此讨论了三种提高孤子效率的途径。  相似文献   

14.
激光的发明,将人类带入光通信、光存储、光显示的高科技文明中,随着高科技的不断发展、进步和应用范围的不断扩大,对激光的要求更高,例如低阈值、高效率、高亮度、高速、小体积、好的模式特性等,这些要求在现有的传统激光器理论及技术中是难以达到的。但是当人们将光子晶体的理论与现有激光物理和技术相结合时,则有望突破传统激光器的性能瓶颈。例如,提高自发辐射速率,同时获得更高的自发辐射向受激辐射的耦合效率,实现激光器的无阈值工作;利用光子晶体对光子态的调制作用,可以获得比传统激光器大几个数量级的光学腔品质因子,大幅度提高激光的亮度、单色性;结合光子晶体微腔及其显著增加的光学腔品质因子,可以提高激光器的调制速率等,因此,人们预期光子晶体科学与技术将成为未来光电子领域发展的核心之一。文章介绍了光子晶体在半导体激光器中的应用,指出光子晶体科学技术引入发展了几十年的半导体激光器中,使半导体激光器展现出更加优异的性能。最后文章作者展望了光子晶体激光器的未来发展和应用的方向。  相似文献   

15.
蓝紫激光和中红外激光在基础研究和国防工程中有重要的应用前景。单光子吸收的碱金属蒸气激光器具有量子效率高、受激发射截面大和热管理性能好等优点,近些年来已成为激光领域中研究热点之一,目前已实现k W量级的输出。双光子吸收的碱金属蒸气激光器可实现蓝紫激光和中红外激光级联输出的特性,也引起越来越多的关注。本文从碱金属原子密度、泵浦光功率、偏振和频率失调量以及调控激光等几种影响因素出发,综述了双光子吸收碱金属蒸气激光的研究进展,在此基础上分析了影响激光输出特性的原因,最后对双光子吸收碱金属蒸气激光器的发展趋势进行了展望。  相似文献   

16.
By using a novel mutual injection technique, phase-locking and coherent combining of two high-power all-fiber lasers are realized and experimentally demonstrated. Steady interference strips with high visibility of 46% are observed. The coherent combined 407 W CW output power with a power-combining efficiency of up to 98% is obtained. The laser array works well with excellent stability. In the long time of high-power operation no thermal distortions or damages are observed. The proposed technique can be used to further scale up the coherent combined output power of high-power fiber lasers.  相似文献   

17.
耦合效率的高低与耦合后光斑的好坏直接影响着光子晶体光纤棒的放大效果,因此需要对种子光的耦合效果进行研究,选择合适的激光器作为种子源。本文对光子晶体光纤棒在固体激光器与光纤激光器两种情况下的耦合效率进行了理论分析;模拟计算了两种激光器情况下耦合效率的变化规律以及对准误差对耦合效率的影响;选择合适的透镜或透镜组,使用两种激光器对光子晶体光纤棒进行了耦合实验;对比两种激光器的耦合效果可知:固体激光器的耦合效率最高只能达到62.4%,而光纤激光器的耦合效率可以达到80%以上;在光纤激光器耦合情况下,对不同功率注入时耦合效率,以及耦合后光斑进行了实验分析。得到的实验结果对后续光纤棒的放大实验具有指导作用。  相似文献   

18.
两路关联光纤激光器互注入锁相实验   总被引:1,自引:0,他引:1  
基于角锥互注入锁相相干合成方案,利用光纤Bragg光栅(R=85%@1064nm)作为两路光纤激光器的共用腔镜,实现了两路光纤激光器相关联,进一步提高了激光的互注入能量。采用外腔结构,较容易实现了两路光纤激光器的能量互注入锁相。在实验上观察到了远场清晰稳定的干涉条纹(可见度超过0.8),获得了功率合成效率约为80%的线偏振相干激光输出。  相似文献   

19.
Based on the rate-equations of quasi-three-level lasers, we analyzed the threshold and the output power of longitudinally pumped Tm:YAG lasers in an active mirror configuration. In contrast to one-pass pumping, two-pass pumping in this configuration will result in a 24% decrease in threshold and 16% increase in slope efficiency. Using a 3-W diode-laser pumping in the active mirror configuration, we demonstrated a CW Tm:YAG laser and obtained 735 mW output power with a slope efficiency up to 49%. Using a Ti:sapphire laser to pump the same device, the threshold power was further reduced and the slope efficiency reached 59%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号